Инфоурок Информатика КонспектыОсновные требования к 3D построению пространственных объектов

Основные требования к 3D построению пространственных объектов

Скачать материал

 

 

 

 

 

РЕФЕРАТ

 

Основные требования к 3D построению пространственных объектов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

1.       Трёхмерная графика.......................................................................3

2.       Применение трёхмерной графики………….…………………...…3

3.       Создание трёхмерной графики……………………………….……4

4.       Программное обеспечение……..…………………………………..8

Список использованной литературы…………………………….……9


 

1.     Трёхмерная графика

 

Трёхмерная графика — раздел компьютерной графики, посвящённый методам создания изображений или видео путём моделирования объёмных объектов в трёхмерном пространстве.

3D-моделирование — это процесс создания трёхмерной модели объекта. Задача 3D-моделирования — разработать визуальный объёмный образ желаемого объекта. При этом модель может, как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).

 

2.     Применение трёхмерной графики

 

Трёхмерная графика активно применяется для создания изображений на плоскости экрана или листа печатной продукции в науке и промышленности, например, в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология»), в современных системах медицинской визуализации.

Самое широкое применение — во многих современных компьютерных играх, а также как элемент кинематографа, телевидения, печатной продукции. Трёхмерная графика обычно имеет дело с виртуальным, воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трёхмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трёхмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи. Но, чтобы насладиться объёмной картинкой, зрителю необходимо расположиться строго по центру.

 

3.     Создание трёхмерной графики

 

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

1)                моделирование — создание трёхмерной математической модели сцены и объектов в ней;

2)                текстурирование — назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов — прозрачность, отражения, шероховатость и пр.);

3)                освещение — установка и настройка источников света;

4)                анимация (в некоторых случаях) — придание движения объектам;

5)                динамическая симуляция (в некоторых случаях) — автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации, ветра, выталкивания и др., а также друг с другом;

6)                рендеринг (визуализация) — построение проекции в соответствии с выбранной физической моделью;

7)                композитинг (компоновка) — доработка изображения;

8)                вывод полученного изображения на устройство вывода — дисплей или специальный принтер.

Рассмотрим каждый шаг подробнее.

1.                 Моделирование (виртуального пространства моделирования) включает в себя несколько категорий объектов:

1)       Геометрия (построенная с помощью различных техник (напр., создание полигональной сетки) модель, например, здание);

2)       Материалы (информация о визуальных свойствах модели, например, цвет стен и отражающая/преломляющая способность окон);

3)       Источники света (настройки направления, мощности, спектра освещения);

4)    Виртуальные камеры (выбор точки и угла построения проекции);

5)    Силы и воздействия (настройки динамических искажений объектов, применяется в основном в анимации);

6)       Дополнительные эффекты (объекты, имитирующие атмосферные явления: свет в тумане, облака, пламя и пр.)

Задача трёхмерного моделирования — описать эти объекты и разместить их в сцене с помощью геометрических преобразований в соответствии с требованиями к будущему изображению. Назначение материалов: для сенсора реальной фото-камеры материалы объектов реального мира отличаются по признаку того, как они отражают, пропускают и рассеивают свет; виртуальным материалам задается соответствие свойств реальных материалов — прозрачность, отражения, рассеивания света, шероховатость, рельеф и пр.

Наиболее популярными пакетами сугубо для моделирования являются:

-                   Pixologic Zbrush;

-                   Autodesk Mudbox, Autodesk 3D max;

-                   Robert McNeel & Assoc. Rhinoceros 3D;

-                   Google SketchUp;

-                   Blender;

-                   Компас (САПР).

Для создания трёхмерной модели человека или существа может быть использован прообраз (в большинстве случаев) Скульптура.

2.                 Текстурирование

Текстурирование подразумевает проецирование растровых или процедурных текстур на поверхности трёхмерного объекта в соответствии с картой UV-координат, где каждой вершине объекта ставится в соответствие определённая координата на двухмерном пространстве текстуры.

Как правило, многофункциональные редакторы UV-координат входят в состав универсальных пакетов трёхмерной графики. Существуют также автономные и подключаемые редакторы от независимых разработчиков, например, Unfold3D magic, Deep UV, Unwrella и др.

3.                 Освещение

Заключается в создании, направлении и настройке виртуальных источников света. При этом в виртуальном мире источники света могут иметь негативную интенсивность, отбирая свет из зоны своего «отрицательного освещения». Как правило, пакеты 3D-графики предоставляют следующие типы источников освещения:

1)                Omni light (Point light) — всенаправленный;

2)                Spot light — конический (прожектор), источник расходящихся лучей;

3)                Directional light — источник параллельных лучей;

4)                Area light (Plane light) — световой портал, излучающий свет из плоскости;

5)                Photometric — источники света, моделируемые по параметрам яркости свечения в физически измеримых единицах, с заданной температурой накала.

Существуют также другие типы источников света, отличающиеся по своему функциональному назначению в разных программах трёхмерной графики и визуализации. Некоторые пакеты предоставляют возможности создавать источники объемного свечения (Sphere light) или объемного освещения (Volume light), в пределах строго заданного объёма. Некоторые предоставляют возможность использовать геометрические объекты произвольной формы. Специалисты советуют начинать с одного основного источника света, а остальные добавлять постепенно - по одному, в зависимости от показаний тестового рендера.

4.                 Анимация

Одно из главных призваний трёхмерной графики — придание движения (анимация) трёхмерной модели, либо имитация движения среди трёхмерных объектов. Универсальные пакеты трёхмерной графики обладают весьма богатыми возможностями по созданию анимации. Существуют также узкоспециализированные программы, созданные сугубо для анимации и обладающие очень ограниченным набором инструментов моделирования:

-                   Autodesk MotionBuilder

-                   PMG Messiah Studio

5.                 Рендеринг

На этом этапе математическая (векторная) пространственная модель превращается в плоскую (растровую) картинку. Если требуется создать фильм, то рендерится последовательность таких картинок — кадров. Как структура данных, изображение на экране представлено матрицей точек, где каждая точка определена, по крайней мере, тремя числами: интенсивностью красного, синего и зелёного цвета. Таким образом рендеринг преобразует трёхмерную векторную структуру данных в плоскую матрицу пикселов. Этот шаг часто требует очень сложных вычислений, особенно если требуется создать иллюзию реальности.

Самый простой вид рендеринга — это построить контуры моделей на экране компьютера с помощью проекции. Обычно этого недостаточно, и нужно создать иллюзию материалов, из которых изготовлены объекты, а также рассчитать искажения этих объектов за счёт прозрачных сред (например, жидкости в стакане).

Наиболее популярными системами рендеринга являются:

PhotoRealistic RenderMan (PRMan)

Mental ray

V-Ray

FinalRender

Brazil R/S

BusyRay

Turtle

Maxwell Render

Fryrender

Indigo Renderer

LuxRender

YafaRay

POV-Ray

 

4. Программное обеспечение

 

3D-моделирование фотореалистичных изображений.

Программные пакеты, позволяющие создавать трёхмерную графику, то есть моделировать объекты виртуальной реальности и создавать на основе этих моделей изображения, очень разнообразны. Последние годы устойчивыми лидерами в этой области являются коммерческие продукты, такие, как:

Autodesk 3ds Max

Autodesk Maya

Autodesk Softimage

Blender

Cinema 4D

Houdini

Modo

LightWave 3D

Caligari Truespace

а также сравнительно новые Rhinoceros 3D, Nevercenter Silo и ZBrush.

Среди открытых продуктов, распространяемых свободно, числится пакет Blender (позволяет создавать 3D-модели, анимацию, различные симуляции и др. c последующим рендерингом), K-3D и Wings3D.

SketchUp

Бесплатная программа SketchUp компании Google позволяет создавать модели, совместимые с географическими ландшафтами ресурса Google Планета Земля, а также просматривать в интерактивном режиме на компьютере пользователя несколько тысяч архитектурных моделей, которые выложены на бесплатном постоянно пополняемом ресурсе Google Cities in Development (выдающиеся здания мира), созданные сообществом пользователей.

Blender — свободный, профессиональный пакет для создания трёхмерной компьютерной графики, включающий в себя средства моделирования, анимации, рендеринга, постобработки и монтажа видео со звуком, компоновки с помощью «узлов» (Node Compositing), а также для создания интерактивных игр. В настоящее время пользуется наибольшей популярностью среди бесплатных 3D редакторов в связи с его быстрым и стабильным развитием, которому способствует профессиональная команда разработчиков.

 

Список использованной литературы

 

1.                 Дж. Ли, Б. Уэр. Трёхмерная графика и анимация. — 2-е изд. — М.: Вильямс, 2002. — 640 с.

2.                 Д. Херн, М. П. Бейкер. Компьютерная графика и стандарт OpenGL. — 3-е изд. — М., 2005. — 1168 с.

3.                 Э. Энджел. Интерактивная компьютерная графика. Вводный курс на базе OpenGL. — 2-е изд. — М.: Вильямс, 2001. — 592 с.

4.                 В. П. Иванов, А. С. Батраков. Трёхмерная компьютерная графика / Под ред. Г. М. Полищука. — М.: Радио и связь, 1995. — 224 с. — ISBN 5-256-01204-5.

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Основные требования к 3D построению пространственных объектов"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Логист

Получите профессию

Фитнес-тренер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

В данной статье рассматриваются основные требования к 3D построению пространственных объектов, что нужно учитывать при правильном построении и какие ошибки чаще всего допускаются. Трёхмерная графика — раздел компьютерной графики, посвящённый методам создания изображений или видео путём моделирования объёмных объектов в трёхмерном пространстве.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 659 991 материал в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 24.03.2020 458
    • DOCX 34.7 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Матыкин Иван Петрович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Матыкин Иван Петрович
    Матыкин Иван Петрович
    • На сайте: 3 года и 3 месяца
    • Подписчики: 0
    • Всего просмотров: 86023
    • Всего материалов: 243

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Технолог-калькулятор общественного питания

Технолог-калькулятор общественного питания

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Организация преподавания информационных систем и технологий в профессиональном образовании

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Этот курс уже прошли 74 человека

Курс повышения квалификации

Теоретические и методологические основы преподавания информатики с учётом требований ФГОС ООО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 151 человек из 49 регионов
  • Этот курс уже прошли 1 717 человек

Курс повышения квалификации

Специфика преподавания информатики в начальных классах с учетом ФГОС НОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 39 человек из 20 регионов
  • Этот курс уже прошли 284 человека

Мини-курс

Профессиональное развитие бизнеса: стратегии и инструменты

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Проектный анализ: стратегии и инструменты управления успешными проектами

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Детское развитие: ключевые моменты взаимодействия с детьми и подростками

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 303 человека из 68 регионов
  • Этот курс уже прошли 166 человек