Главная / Биология / Урок-лекция по общей биологии в 10 классе (химико - биологического профиля). Тема: "Углеводы – органические вещества, их химическая структура, разновидности, содержание в клетке и функции"

Урок-лекция по общей биологии в 10 классе (химико - биологического профиля). Тема: "Углеводы – органические вещества, их химическая структура, разновидности, содержание в клетке и функции"

Саутиева Замира Владимировна учитель биологии МКОУ СОШ №6 г. Беслана


Урок-лекция

по общей биологии в 10 классе (химико - биологического профиля).

Раздел 2. Учение о клетке. Глава 3. Химическая организация клетки.



Тема: Углеводы – органические вещества, их химическая структура, разновидности, содержание в клетке и функции.



Цели /слайд2/.

Освоение знаний об основных биологических теориях, идеях и принципах, являющихся составной частью современной естественнонаучной картины мира; строении, многообразии и особенностях биосистем (клетка); выдающихся биологических открытиях и современных исследованиях в биологической науке.

Овладение умениями: устанавливать связь между развитием биологии и социально – этическими, экологическими проблемами человечества; самостоятельно проводить биологические исследования; пользоваться биологической терминологией и символикой.

Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения проблем современной биологической науки.

Воспитание убежденности в возможности познания закономерностей живой природы, необходимости бережного отношения к ней.


Задачи/слайд 2/.

Продолжить углубление знаний об особенностях строения органических веществ; сформировать знания о строении и функциях углеводов и умения устанавливать связь между их строением и функциями, охарактеризовать их многообразие. Выяснить причину многообразия жизни на нашей планете.


Оборудование: ТСО – компьютер, презентация к уроку; таблицы, иллюстрирующие строение и функции углеводов; карточки – задания, тестовые задания на каждый стол.

На доске терминология.


Тип урока: комбинированный.

Ход урока:


I. Изучение нового материала. Терминология.

1. Биологические полимеры.

2. Содержание углеводов в живой материи.

3. Классификация углеводов и их свойства.

4. Биологические свойства углеводов.

II. Закрепление знаний.

III. Домашнее задание.











I. Изучение нового материала.

Терминология.


1.Полимеры (от греч. поли – много и мерос – часть), макромолекулы (от греч.макрос – большой). – гигантские молекулы, образованные многими повторяющимися частями, так называемыми мономерами.

16. Глюкоза, фруктоза, галактоза (гексозы), Их общая формула С6Н12О6. Глюкоза – виноградный сахар. Фруктоза встречается в плодах, поэтому ее называют плодовым сахаром. Галактоза – пространственный изомер глюкозы. Она входит в состав лактозы – молочного сахара.

2. Мономеры (от греч. монос – один). это строительные блоки, способные соединяться друг с другом, образуя полимеры.


17. Альфа и бета глюкоза. (Гидроксильная группа при первом атоме углерода может располагаться как под плоскостью цикла (альфа - изомер), так и над ней (бета - изомер).

3. Полисахариды - биологические полимеры

18. Олигосахариды: (полисахариды I порядка) дисахариды, трисахариды

4. Углеводы - органические вещества. Общая их формула Сn2О)m.

19. Сахароза – С12Н22О11 (тростниковый или свекловичный сахар)

5. Моносахариды (монозы, или простые сахара) – состоят из одной молекулы

20. Лактоза – молочный сахар, имеет в составе глюкозу и галактозу.

6. Глицерин - многоатомный спирт

21. Мальтоза – солодовый сахар, структурный элемент крахмала и гликогена

7. Глицериновый альдегид и диоксиацетон- два простейших моносахарида, образуются при окислении глицерина, содержат по три углеродных атома и относятся к триозам

(3 С)

22. Полисахариды II порядка, несахаропо- добные, крахмал (С6Н10О5)n, гликоген, целлюлоза(клетчатка), хитин, муреин

8.

23. Гепарин – ингибитор свертывания крови

9. Триозы (3 С), тетрозы (4 С), пентозы (5С)

гексозы (6 С),гептозы (7 С)

24. Слизи – выделяются железами, богаты углеводами

10. Гидроксильная группа ( -ОН)

25. Камеди – выделяются в местах повреждений стволов деревьев

11. Карбонильный кислород (=О)

26. АТФ – аденозинтрифосфорная кислота

12. Альдегид: если карбонильная группа находится в конце цепи, тогда моносахарид называется альдозой

27. Коферменты:

НАД+-никотиномидадениндинуклеотид, ФАД+-флавинадениндинуклеотид

13. Кетоны: при любом другом положении карбонильной группы моносахарид является кетоном (например, диоксиацетон) и называется кетозой.

28. Рибулозобифосфат - акцептор СО2 в

темновой фазе фотосинтеза

14. Эритроза (тетроза). Этот сахар в растениях является одним из промежуточных продуктов фотосинтеза.

Шерсть и шелк - белки, хлопок - углевод целлюлоза, каучук - углеводород полиизопрен.

15. Рибоза и дезоксирибоза - пентозы, рибоза(С5Н10О5) и дезоксирибоза5Н10О4). В дезоксирибозе около одного из атомов углерода отсутствует кислород, отсюда и название этого углевода. Рибоза и дезоксирибоза входят в состав мономеров нуклеиновых кислот – ДНК и РНК, а также в состав АТФ.

Регулярным, или периодическим, называется полимер, в молекуле которого группа мономеров периодически повторяется : Б-А-А-Б-А-А-Б-А-А. Не регулярный, или непериодический, когда нет видимой закономерности и повторяемости мономеров: А-Б-Б-Б-А-А-А-Б-А.



I, 1. Биологические полимеры /слайд 3,4/.


Основу строения клеток и организмов составляют огромные молекулы, называемые полимерами. Полимеры (от греч. поли – много и мерос – часть) – гигантские молекулы, образованные многими повторяющимися частями, так называемыми мономерами (от греч. монос – один). Мономеры - это строительные блоки, способные соединяться друг с другом, образуя полимеры, известные также под названием макромолекул (от греч.макрос – большой).

К полимерам относятся основные составные элементы живых организмов – полисахариды (крахмал, гликоген, целлюлоза, хитин), белки и нуклеиновые кислоты. Их называют биологическими полимерами. С начала XX в. химики стали изготовлять искусственные органические полимеры.

Молекулы биологических полимеров лежат в основе используемых людьми уже не одну тысячу лет шерсти и шелка (белки), хлопка (углевод целлюлоза), каучука (углеводород полиизопрен). Искусственные полимеры лежат в основе искусственного волокна, пластмасс.

Молекулярная масса искусственных полимеров имеет обычно неопределенную величину. Природные же полимеры имеют вполне определенную величину и массу – от нескольких тысяч до нескольких сотен тысяч ( в исключительных случаях до 1 млн) молекул. Длина молекул доходит до нескольких сотен нанометров (1нм равен 10-9 м).

По особенностям строения полимеры делятся на два типа: регулярные и нерегулярные.

Регулярным, или периодическим, называется полимер, в молекуле которого группа мономеров периодически повторяется. Например: Б-А-А-Б-А-А-Б-А-А и т.д. (буквами А и Б обозначены разные мономерные звенья). К регулярным полимерам из биологических полимеров относятся многие полисахариды.

Нерегулярным, или непериодическим, называется полимер, в молекуле которого нет видимой закономерности и повторяемости мономеров. Например: А-Б-Б-Б-А-А-А-Б-А и т.д. Из биологических к нерегулярным полимерам относятся белки и нуклеиновые кислоты.

Итак, организм строит свои макромолекулы, соединяя друг с другом мономеры. Полимеры обладают многообразными свойствами. Это объясняется многочисленными

вариантами соединения мономеров в цепь. За счет этого обеспечивается разнообразие жизни на нашей планете.


I, 2. Содержание углеводов в живой материи. /слайд 6/

Углеводы – самые распространенные на Земле органические вещества. Они содержатся в клетках всех живых организмов. Название «углеводы» произошло потому, что первые известные вещества этого класса состояли как бы из углерода и воды. Общая их формула Сn2О)m. У большинства углеводов число атомов водорода в 2 раза превышает количество атомов кислорода. Позднее были найдены углеводы, не отвечающие этой общей формуле, но название «углеводы» сохранилось.

В животных клетках углеводов немного: 1 – 2 иногда до 5% (например, в клетках печени). Растительные клетки, напротив, богаты углеводами – там их содержание достигает 90% сухой массы.


I, 3. Классификация углеводов и их свойства. /слайд7/

Углеводы, или сахариды, по особенностям строения делятся на три группы.

  1. Моносахариды/слайд 8/ (монозы, или простые сахара) – состоят из одной молекулы и представляют собой твердые кристаллические вещества, бесцветные и хорошо растворимые в воде. Почти все они обладают приятным сладким вкусом.


Моносахариды можно рассматривать как производные многоатомных спиртов (в простейшем случае – глицерина). При окислении глицерина получаются два простейших моносахарида – глицериновый альдегид и диоксиацетон, которые играют важную роль в обмене веществ клетки. Слайд№1: Образование простейших моносахаридов.

Глицериновый альдегид и диоксиацетон содержат по три углеродных атома и относятся к триозам (3 С); тетрозы содержат четыре атома углерода (4 С); пентозы – пять (5 С); гексозы – шесть (6 С); и гептозы – семь (7 С).

В неразветвленном скелете моносахарида все атомы углерода, кроме одного, связаны с гидроксильными группами(-ОН), а один – с карбонильным кислородом (=О). Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид (как, например, глицериновый) и называется альдозой, при любом другом положении этой группы он является кетоном (например, диоксиацетон) и называется кетозой.

Моносахариды существуют также и в виде замкнутых циклических форм, которые образуются в результате реакции спиртовой и альдегидной (или кетонной) групп внутри самой молекулы.

Из тетроз в процессах жизнедеятельности, более важна эритроза. Этот сахар в растениях является одним из промежуточных продуктов фотосинтеза. Слайд №9: Эритроза (структурная и циклическая формы).

Наиболее широко распространены в животном и растительном мире пентозы и гексозы. Пентозы представлены такими важными соединениями, как рибоза5Н10О5) и дезоксирибоза5Н10О4). В дезоксирибозе около одного из атомов углерода отсутствует кислород, отсюда и название этого углевода. Рибоза и дезоксирибоза входят в состав мономеров нуклеиновых кислот – ДНК и РНК, а также в состав АТФ. Слайд №10: Пентозы. Рибоза и дезоксирибоза.

Из гексоз наиболее широко распространены - глюкоза, фруктоза и галактоза. Их общая формула С6Н12О6. Глюкоза – виноградный сахар. Она входит в состав важнейших ди- и полисахаридов. Глюкоза – первичный и главный источник энергии для клеток. Фруктоза в большом количестве встречается в плодах, поэтому ее часто называют плодовым сахаром. Особенно много фруктозы в меде, фруктах, сахарной свекле. Галактоза – пространственный изомер глюкозы. Она входит в состав лактозы –

молочного сахара, а также некоторых полисахаридов. Слайд №11: Гексозы. Глюкоза, галактоза,фруктоза.

Моносахариды могут быть представлены в форме альфа - и бетта - изомеров. Гидроксильная группа при первом атоме углерода может располагаться как под плоскостью цикла (альфа - изомер), так и над ней (бета - изомер). Молекулы крахмала состоят из остатков альфа – глюкозы, а молекулы целлюлозы – из остатков бета – глюкозы. Слайд №12: Схемы строения альфа- и бетта – глюкозы.

2. Олигосахариды (полисахариды первого порядка) составляют промежуточную группу между моносахаридами и высшими полисахаридами (полисахаридами второго порядка). Они содержат от 2 до 10 моносахаридных остатков. В зависимости от количества остатков моносахаридов (количества мономерных звеньев), входящих в молекулы олигосахаридов, различают дисахариды, трисахариды и т.д. Наиболее широко распространены в природе дисахариды, молекулы которых образованы двумя остатками моносахаридов. К ним относятся сахароза, лактоза и мальтоза.

Сахароза – хорошо знакомый нам тростниковый или свекловичный сахар; общая формула С12Н22О11. Сахароза состоит из остатков глюкозы и фруктозы. Она чрезвычайно широко распространена в растениях (семена, ягоды, корни, клубни, плоды) и играет большую роль в питании многих животных и человека. Этот дисахарид легко растворим в воде. Главное сырье для получения сахарозы – сахарная свекла и сахарный тростник. Слайд №13: Сахароза.

Лактоза – молочный сахар, имеет в составе глюкозу и галактозу. Этот дисахарид находится в молоке (от 2 до 8,5%) и является основным источником энергии для детенышей млекопитающих. Используется в микробиологической промышленности для приготовления питательных сред. Слайд №14: Лактоза.

Мальтоза – солодовый сахар, состоит из двух молекул глюкозы. Мальтоза является основным структурным элементом крахмала и гликогена. Слайд №15: Мальтоза.

Олигосахариды еще называют сахароподобными веществами.

  1. Полисахариды второго порядка, или несахароподобные сложные углеводы, в

воде не растворяются, сладкого вкуса не имеют. Образуются в результате реакции поликонденсации и состоят из большого числа моносахаридов. Молекулярная масса велика и составляет от нескольких тысяч до нескольких миллионов. Важнейшими полисахаридами являются крахмал, гликоген, целлюлоза, хитин, муреин.

Крахмал является смесью двух полимеров альфа - глюкозы: амилозы и амилопектина. Амилоза состоит из остатков глюкозы, соединенных в неразветвленную цепь. В составе амилозы – от 60 до 300 остатков глюкозы. Молекулы амилозы свернуты в спирали. Амилоза способна растворяться в горячей воде и в присутствии йода окрашивается в синий цвет. Амилопектин состоит как из линейных, так и из разветвленных цепей, образованных примерно 1500 остатками глюкозы. Амилопектин окрашивается йодом в сине – фиолетовый цвет. Слайд №16: Схема строения крахмала.

Количество остатков глюкозы в молекуле крахмала исчисляется несколькими тысячами. Его общая формула (С6Н10О5)n. Крахмал содержится в большом количестве, например, в клубнях картофеля, в большинстве семян и во многих плодах. Запасается крахмал в виде крахмальных зерен, наиболее крупные они у картофеля, а самые мелкие – у риса и гречихи. Слайд №16: крахмальные зерна пшеницы (а), овса (б) и картофеля (в).

Гликоген – полисахарид, содержащийся в тканях тела животных и человека, а также грибах, дрожжах и зерне сахарной кукурузы. Гликоген играет важную роль в превращениях углеводов в животных организмах. Он в значительных количествах накапливается в печени, мышцах, сердце и других органах. Гликоген поставляет глюкозу в кровь. Он является полимером альфа – глюкозы и по структуре напоминает амилопектин, но разветвлены его полимерные цепи сильнее. Молекула гликогена состоит примерно из 30 тыс. остатков глюкозы. Слайд №17: Гликоген.

Клетчатка (целлюлоза) – главный структурный компонент клеточных стенок растений. В ней аккумулировано около 50% всего углерода биосферы. Клетчатка нерастворима в воде. По своей структуре это линейный полимер. Ее молекула представляет собой неразветвленную вытянутую цепочку моносахаридов, представленных бета – глюкозой. Множество линейных молекул целлюлозы уложено параллельно и «связано в пучки» водородными связями. Поперечная связь между цепями препятствует проникновению воды, поэтому целлюлоза очень устойчива к гидролизу и, следовательно, является прекрасным строительным материалом, идеально подходящим для растений. Слайд №18: Конформация молекулы целлюлозы.

Хитин – это полимер, мономером которого является аминопроизводное бета – глюкозы – N-ацетилглюкозамин. Хитин является строительным материалом, которого особенно много в наружном скелете членистоногих и в клеточных стенках грибов.

Таким образом, углеводы – разнообразная по своему строению, а, следовательно, и по физическим и химическим свойствам, группа веществ. Это многообразие позволяет им выполнять в клетках и организмах многочисленные функции. Слайд 19


I, 4. Биологические функции углеводов.


Со многими функциями этих органических веществ мы уже познакомились выше, поэтому подчеркнем лишь главные функции углеводов./Слайд 20 - 22/


1. Энергетическая – углеводы служат источником энергии для организма. При окислении 1г углеводов выделяется 17,6 кДж (4,2 ккал) энергии. Следует отметить, что сахара являются главным источником быстро мобилизуемой энергии, так как в процессе пищеварения они легко переводятся в форму, пригодную для удовлетворения энергетических потребностей клеток.

2. Строительная – целлюлоза входит в состав клеточных стенок растений, хитин обнаруживается в клеточной стенке грибов и в наружном скелете членистоногих, гликопротеиды – соединения углеводов с белками входят в состав хрящевой и костной ткани животных.

3. Запасающая – выражается в том, что крахмал накапливается клетками растений, а гликоген – клетками животных. Эти вещества служат для клеток и организмов источником глюкозы, которая легко высвобождается по мере необходимости.

4. Защитнаягепарин – ингибитор свертывания крови; слизи, выделяемые различными железами и богатые углеводами, предохраняют пищевод, кишечник, желудок, бронхи от механических повреждений, препятствуют проникновению в организм бактерий и вирусов; камеди, выделяющиеся в местах повреждения стволов и ветвей, защищают деревья и кустарники от проникновения инфекций через раны.

5. Составная часть жизненно важных веществ – входят вместе с белками в состав ферментов, входят в состав ДНК, РНК, АТФ, участвуют в синтезе коферментов НАД+, НАДФ+, ФАД+.

Слайд №23: ФАД – флавинадениндинуклеотид, НАД – никотиномидадениндинуклеотид.

6. Участие в фиксации углерода - рибулозобифосфат является непосредственным акцептором углекислого газа в темновой фазе фотосинтеза. Слайд №24: Фиксация СО2 в темновой фазе фотосинтеза.


II. Закрепление знаний.

1. Обобщающая беседа по ходу изучения нового материала.

2. Работа по карточкам (компьютерный и печатный варианты).

3. Тестовая проверка знаний.



III. Домашнее задание.

Изучить параграф учебника - 3.2.2., стр.100-102, конспект урока (авторы учебника: В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин, Е. Т. Захарова), 2007г.


Урок-лекция по общей биологии в 10 классе (химико - биологического профиля). Тема: "Углеводы – органические вещества, их химическая структура, разновидности, содержание в клетке и функции"
  • Биология
Описание:



Основу строения клеток и организмов составляют огромные молекулы, называемые полимерами. Полимеры (от греч. поли – много и мерос – часть) – гигантские молекулы, образованные многими повторяющимися частями, так называемыми мономерами (от греч. монос – один). Мономеры -  это строительные блоки, способные соединяться друг с другом, образуя полимеры, известные также под названием макромолекул (от греч.макрос – большой).

К полимерам относятся основные составные элементы живых организмов – полисахариды (крахмал, гликоген, целлюлоза, хитин), белки и нуклеиновые кислоты. Их называют биологическими полимерами. С начала XX в. химики стали изготовлять искусственные органические полимеры.

Молекулы биологических полимеров лежат в основе используемых людьми уже не одну тысячу лет шерсти и шелка (белки), хлопка (углевод целлюлоза), каучука (углеводород полиизопрен). Искусственные полимеры лежат в основе искусственного волокна, пластмасс.

Автор Саутиева Замира Владимировна
Дата добавления 05.01.2015
Раздел Биология
Подраздел
Просмотров 548
Номер материала 32614
Скачать свидетельство о публикации

Оставьте свой комментарий:

Введите символы, которые изображены на картинке:

Получить новый код
* Обязательные для заполнения.


Комментарии:

↓ Показать еще коментарии ↓