Главная / Информатика / Формирование логического мышления на уроках естественно-математического цикла

Формирование логического мышления на уроках естественно-математического цикла

Формирование логического мышления на уроках естественно-математического цикла

Обучение информатике не должно сводиться только к сообщению научных фактов, к отработке специальных навыков и умений. Оно призвано помогать развитию познавательных способностей ребенка, его интеллекта, культуры, логического мышления и, в конечном счете, должно быть направлено на формирование свободной личности. В ходе преподавания информатике нужно вырабатывать понятийное мышление, формировать базовые интеллектуальные качества, такие, как, уровень общей культуры, кругозор, эрудиция, любознательность, критичность, дисциплинированность, самоконтроль и др. Жизненные успехи личности во многом зависят от уровня интеллекта во всех его значениях. Способность к логическому мышлению, как и другую способность, можно целенаправленно развивать и формировать. Для этого ученик должен освоить методы и приемы рационального мышления, вырабатывать у себя привычку к мыслительной деятельности, привычку не сдаваться перед трудной задачей, а упорно искать пути ее решения. Действительное развитие логического мышления возможно лишь при направленной напряженной мыслительной деятельности. Для этого нужно включать элементы занимательности, игровые моменты, применять разнообразные методы и приемы занятий, подбирать задачи с интересным содержанием.
Для формирования логического мышления можно применить тесты, которые можно разделить на три основные группы: словесные, символико-графические и комбинированные. К первой группе относятся анаграммы и вербальные тесты. Анаграммой называется слово, в котором поменяны местами все или несколько букв. Сущность упражнения состоит в восстановлении «разрушенного» слова, например, НЛКИЕАЙ (ЛИНЕЙКА). Интересны для учащихся и случаи, когда в упражнении включено задание: «Исключить лишнее слово». Например, МАПРЯЯ, ЧУЛ, РЕЗОТОК, РИПЕТРОМ. Упражнение состоит из двух частей:
1) решить анаграммы (прямая, луч, отрезок, периметр); 2) исключить лишнее слово, т.е. определить логическую закономерность, лежащую в основе подбора этих терминов, и исходя из нее, исключить логически несовместимое слово. В данном случае лишним словом будет «Периметр», т.к. это величина, а остальные слова – геометрические фигуры. Таким образом, ученики не только усваивают математическую терминологию, но и развивают логическое мышление. Или же, например, нимотро, ансерк, чеврнисрете. (монитор, сканер, винчестер. Лишнее слово: винчестер)
Задания символико-графического типа предназначаются для формирования умений и навыков применения теоретического материала при решении задач, для повторения и закрепления материала, для ее систематизации и обобщения. Вот несколько примеров:

примеры



К комбинированным логическим тестам относятся задания, содержащие как вербальную версию, так и символико-графическую. Таким образом, осуществляется связь математики с языковым развитием учащихся. Такие упражнения требуют не только наблюдательности, но и умения устанавливать необычные связи между объектами. Например «Вставьте пропущенное слово»:

Упражнение: Вставьте пропущенное слово



После усвоения таких заданий надо приступить к освоению эвристических методов решения логических задач. Эвристика – это наука о специальных методах и приемах рационального мышления. Человек, владеющий эвристикой, мыслит уже не хаотично, как это бывает, а, применяя эвристические приемы, что позволяет ему решать, казалось бы, неразрешимые задачи. Освоение эвристических приемов – это умение применять их при решении трудных задач, что дается лишь упорной тренировкой. Что же это за приемы?
I. Метод погружения.
Сущность метода состоит в умении вникнуть в задачу, «погрузиться» в нее. Именно этих качеств часто недостает учащимся. Во многих случаях такого погружения бывает достаточно для успешного решения задач. Например:
Поверхность пруда постепенно закрывается вырастающими в нем кувшинками. Кувшинки растут столь быстро, что за каждый день закрываемая ими площадь удваивается. Вся поверхность пруда закрылась за 30 дней. За сколько дней была закрыта кувшинками первая половина всей поверхности пруда?
«Погрузившись» в задачу можно установить, что за последний день произошло удвоение, значит за 29 дней была закрыта половина пруда. Ответ: за 29 дней.
II . Метод введения дополнительных данных.
Сущность метода заключается во временном (иногда постоянном) введении дополнительного объекта в условии задачи, без чего невозможно ее решение. Вот широко известная старинная задача:
Отец завещал трем своим сыновьям 19 лошадей. Старший сын должен получить 1/2, средний – 1/4 и младший – 1/5 всех лошадей. Когда отец умер, его сыновья никак не могли поделить лошадей, так как каждый из них должен был получить не целое число лошадей. Тут пришел им на помощь приятель отца. Как он помог им поделить лошадей?
Для этого он привел свою лошадь, так что оказалось всего 20 лошадей. Из них 10 лошадей получил старший брат, 5 – средний, 4 – младший. Оставшуюся лошадь приятель отца отвел домой. Все остались довольны.
Вот еще одна довольно интересная задача:
Одна библиотека переезжала в новое здание, однако средств на перевозку книг не было. И все же работники библиотеки нашли выход и перевезли книги практически бесплатно. Какой выход был найден?
В качестве дополнительного данного здесь были привлечены абоненты. Им предложили взять все книги домой, а когда библиотека переехала, принести их обратно.
III . Метод редукции (отбрасывание части данных).
Метод редукции заключается в следующем: если отбросить часть данных из условия задачи, то можно найти оптимальное решение (иногда – единственное). Иногда он применяется в комплексе с 1-м методом. Например:
Кузнецу принесли 5 обрывков цепи, по 3 звена в каждом, и попросили соединить их в одну цепь. Кузнец задумался, как выполнить этот заказ проще. Сколько же звеньев нужно разъединить, а затем вновь соединить, чтобы все обрывки образовали одну цепь? Подумав, кузнец приступил к делу и сделал заказ. Какое простое решение нашел кузнец?
Вместо того, чтобы расковать четыре обрывка, нужно три из них «отбросить», и полностью расковать лишь один. Получится три раскованных звена, которыми можно соединить четыре оставшихся обрывка (экономится 25% рабочего времени). Вот еще один пример:
Машина, груженная контейнером, подошла к арке. Контейнер не проходил сантиметров на 15. Вызвать кран – слишком хлопотно и накладно. Однако шофер нашел простой выход. Какой?
Здесь временно «отбрасывается» часть воздуха из колес. Таким образом, грузовая машина может опуститься вниз на 15 см и более.
IV . Метод поворота, метод сдвига.
Два метода близки между собой. Применение метода поворота предполагает мысленное или реальное изменение положения элементов условий относительно друг друга, иногда это изменение направления движения. При методе сдвига осуществляется мысленное (или реальное) смещение элементов относительно друг друга или объекта в целом относительно среды. Например:
Два любителя верховой езды затеяли необычный спор: выиграет тот, чья лошадь придет к финишу последней. После объявления старта всадники долго не решались сесть на лошадей. Тут к ним подошел прохожий и, узнав в чем дело, что-то тихо сказал. После этого всадники мгновенно вскочили на лошадей и быстро помчались к финишу. Что сказал им прохожий?
Ответ: «Поменяйтесь лошадями».
V. Метод переноса.
Метод заключается в применении знаний, правил из одной области в другую. Например, обычно, когда мы говорим о скорости, мы имеем в виду км/ч или м/с. непривычно звучит такое понимание скорости, как дом/год, бочонок/день. В науке и технике очень часто используются достижения не только смежных наук, но и казалось бы очень далеких. К примеру, множество технических решений подсказали живая природа, зоология, биология. И наоборот, в частности в медицине в последнее время стали применять математические модели болезней, развитие эпидемий и т.д. Например:
Один человек выпивает кадь питья в 14 дней, а с женой выпьет ту же кадь в 10 дней. За сколько дней жена одна выпьет эту кадь? (Задача Магницкого)
Задачу можно решить так: примем искомую величину за х и перенесем понятие скорость на квас – получится бочонок /день (б/д). Теперь можно написать уравнение 1/14 б/д + 1/х б/д = 1/10 б/д. Решив уравнение, легко находим х=35.
VI . Дискретный метод. Аналитический метод.
Дискретный метод заключается во временной остановке какого-либо действия, процесса. Метод широко применяется в науке и технике.
Аналитический метод (метод разложения) предполагает разложение объекта или явления на составные элементы с последующим (если это необходимо) синтезом. Анализ – один из важнейших процессов мышления вообще. Например:
Требуется поджарить 3 ломтика хлеба. На сковороде умещаются лишь два ломтика. На поджаривание ломтика с одной стороны требуется 1 мин. За какое кратчайшее время можно поджарить с двух сторон все 3 ломтика?
Решение. Сначала поджарим два ломтика с одной стороны, затем один из них перевернем, а второй отложим в сторону – на его место положим третий кусок. Поджарив полностью первый, перевернем третий, а на освободившееся место положим недожаренную сторону второго.
Таким образом, прервав технологический процесс» на одном из кусочков, сможем поджарить их не за 4 мин, а за 3 мин.
Второй пример.
Задача-фокус. Можно ли сделать в открытке прорезь, чтобы в нее пролез человек?
Ответ: можно.
VII . Парадоксы и софизмы.
Парадокс (в переводе с греческого – мнение) – это противоречивое высказывание.
В широком смысле парадокс – высказывание, истинность которого неочевидна; в этом смысле парадоксальными принято называть любые неожиданные противоречивые высказывания, особенно если неожиданность их смысла выражена в остроумной форме.
В физике широко известен «парадокс близнецов». Согласно которой один близнец остается на Земле, а второй улетает на космическом корабле со скоростью света. Спустя, допустим лет 20 он прилетает молодым, чем близнец, который остался на Земле. Парадокс заключается в том, что человечество еше не придумало такой корабль, который смог бы лететь с такой скоростью. (Лоренцево замедление времени из СТО)
В математике парадокс – ситуация, когда в данной теории доказываются два взаимоисключающих суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами, т.е. парадокс – высказывание, которое в данной теории равным образом может быть доказана и как истина, и как ложь. Например:
Крокодил украл ребенка; он обещал отцу вернуть ребенка, если отец угадает – вернет ему крокодил ребенка или нет. Что должен сделать крокодил, если отец скажет, что крокодил не вернет ему ребенка? (Дилемма крокодила).
Ответ: Крокодил попал в парадоксальную ситуацию. Действительно, если он вернет ребенка, то отец угадал, а значит, крокодил должен вернуть ребенка. Но если он вернет ребенка, то отец не угадал, а значит, крокодил не должен возвращать ребенка. Итак, парадокс налицо: формально рассуждая, крокодил не может ни вернуть ребенка, ни оставить себе.
Софизм (от греческого – хитрая уловка, измышление) – логически неправильное рассуждение (вывод, доказательство), выдаваемое за правильное. В математике софизм – умышленно ложное умозаключение с замаскированной ошибкой.
В житейских ситуациях, не различают софизмы и парадоксы. Например:
То, что ты не потерял, ты имеешь; ты не потерял рога, следовательно, ты их имеешь. (Древний софизм «Рогатый»).
Второй пример. Два равно трем.
Рассмотрим очевидное равенство

Пример

Отсюда, извлекая, квадратный корень, имеем:

Пример

Прибавляя к обеим частям этого равенства по 5/2, получаем, что 2=3. Где ошибка?
Ответ: при извлечении корня квадратного из обеих частей возможного равенства получаем неверный результат. Так как при любом, а справедливо равенство Пример, то правильным следствием должно быть верное равенство
Пример, а из него следует верное равенство Пример
Третий пример. Нет коней.
Дано уравнение х-а=0. Разделив обе части этого уравнения на х-а, получим, что 1=0. Поскольку это равенство неверное, то это означает, что исходное уравнение не имеет корней. Где ошибка?
Ответ: поскольку х=а – корень уравнения, то, разделив на выражение х-а обе его части, мы потеряли этот корень и потому получили неверное равенство 1=0.

Если у ребенка не развито логическое мышление, то он никогда не сможет понять информатику. Хочу привести еще один пример из Демо варианта ЕГЭ 2009 по информатике на логическое мышление (В6).
Классный руководитель пожаловался директору, что у него в классе появилась компания из 3-х учеников, один из которых всегда говорит правду, другой всегда лжет, а третий говорит через раз то ложь, то правду. Директор знает, что их зовут Коля, Саша и Миша, но не знает, кто из них правдив, а кто – нет. Однажды все трое прогуляли урок астрономии. Он вызвал всех троих в кабинет и поговорил с мальчиками. Коля сказал: «Я всегда прогуливаю астрономию. Не верьте тому, что скажет Саша». Саша сказал: «Это был мой первый прогул этого предмета». Миша сказал: «Все, что говорит Коля,- правда». Расположите первые буквы имен мальчиков в порядке: «говорит всегда правду», «всегда лжет», «говорит правду через раз».

Итак, мы рассмотрели основные приемы решения логических задач. Это отнюдь не окончательный список приемов, существуют еще множество приемов, в зависимости от условия и сложности задачи.
Рассмотренные типы задач помогают привить заинтересованность к предмету, делают его более интересным. Они решаются детьми может быть и в течение нескольких дней, но, поверьте, какое они удовольствие получают, если находят решение задачи сами, или в микрогруппах.
Также такие логические задачи можно рассматривать на занятиях кружка «Интеллектика», «Математическая логика» и т.д.



Использованная литература

  1. Мочалова О.Б. Типология творческих задач. Учебно-методическое пособие для студентов, учителей и учащихся. Уфа, 2001.

  2. Мочалова О.Б., Мочалова Н.М. Задачи на развитие сообразительности. Учебно-методическое пособие для учителей и учащихся. Уфа, 2001.

  3. Мочалова О.Б. Учимся рассуждать логически (шаг третий). Учебно-методическое пособие для учителей и учащихся. Уфа, 2001.

  4. Нестеренко Ю.В. и др. Задачи на смекалку. – М.: Дрофа, 2006.

  5. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка. – М.: Просвещение, 1988.

  6. Олехник С.Н., Нестеренко Ю.В., Потапов М.К. Старинные занимательные задачи. – М.: Дрофа, 2006.



05.06.2009



Формирование логического мышления на уроках естественно-математического цикла
  • Информатика
Описание:

Обучение информатике не должно сводиться только к сообщению научных фактов, к отработке специальных навыков и умений. Оно призвано помогать развитию познавательных способностей ребенка, его интеллекта, культуры, логического мышления и, в конечном счете, должно быть направлено на формирование свободной личности. В ходе преподавания информатике нужно вырабатывать понятийное мышление, формировать базовые интеллектуальные качества, такие, как, уровень общей культуры, кругозор, эрудиция, любознательность, критичность, дисциплинированность, самоконтроль и др. Жизненные успехи личности во многом зависят от уровня интеллекта во всех его значениях. Способность к логическому мышлению, как и другую способность, можно целенаправленно развивать и формировать. Для этого ученик должен освоить методы и приемы рационального мышления, вырабатывать у себя привычку к мыслительной деятельности, привычку не сдаваться перед трудной задачей, а упорно искать пути ее решения. Действительное развитие логического мышления возможно лишь при направленной напряженной мыслительной деятельности. Для этого нужно включать элементы занимательности, игровые моменты, применять разнообразные методы и приемы занятий, подбирать задачи с интересным содержанием.
Для формирования логического мышления можно применить тесты, которые можно разделить на три основные группы: словесные, символико-графические и комбинированные. К первой группе относятся анаграммы и вербальные тесты. Анаграммой называется слово, в котором поменяны местами все или несколько букв. Сущность упражнения состоит в восстановлении «разрушенного» слова, например, НЛКИЕАЙ (ЛИНЕЙКА). Интересны для учащихся и случаи, когда в упражнении включено задание: «Исключить лишнее слово». Например, МАПРЯЯ, ЧУЛ, РЕЗОТОК, РИПЕТРОМ. Упражнение состоит из двух частей:
1) решить анаграммы (прямая, луч, отрезок, периметр); 2) исключить лишнее слово, т.е. определить логическую закономерность, лежащую в основе подбора этих терминов, и исходя из нее, исключить логически несовместимое слово. В данном случае лишним словом будет «Периметр», т.к. это величина, а остальные слова – геометрические фигуры. Таким образом, ученики не только усваивают математическую терминологию, но и развивают логическое мышление. Или же, например, нимотро, ансерк, чеврнисрете. (монитор, сканер, винчестер. Лишнее слово: винчестер)
Задания символико-графического типа предназначаются для формирования умений и навыков применения теоретического материала при решении задач, для повторения и закрепления материала, для ее систематизации и обобщения. Вот несколько примеров:

ar1.jpg

К комбинированным логическим тестам относятся задания, содержащие как вербальную версию, так и символико-графическую. Таким образом, осуществляется связь математики с языковым развитием учащихся. Такие упражнения требуют не только наблюдательности, но и умения устанавливать необычные связи между объектами. Например «Вставьте пропущенное слово»:

ar2.jpg

После усвоения таких заданий надо приступить к освоению эвристических методов решения логических задач. Эвристика – это наука о специальных методах и приемах рационального мышления. Человек, владеющий эвристикой, мыслит уже не хаотично, как это бывает, а, применяя эвристические приемы, что позволяет ему решать, казалось бы, неразрешимые задачи. Освоение эвристических приемов – это умение применять их при решении трудных задач, что дается лишь упорной тренировкой. Что же это за приемы?
I. Метод погружения.
Сущность метода состоит в умении вникнуть в задачу, «погрузиться» в нее. Именно этих качеств часто недостает учащимся. Во многих случаях такого погружения бывает достаточно для успешного решения задач. Например:
Поверхность пруда постепенно закрывается вырастающими в нем кувшинками. Кувшинки растут столь быстро, что за каждый день закрываемая ими площадь удваивается. Вся поверхность пруда закрылась за 30 дней. За сколько дней была закрыта кувшинками первая половина всей поверхности пруда?
«Погрузившись» в задачу можно установить, что за последний день произошло удвоение, значит за 29 дней была закрыта половина пруда. Ответ: за 29 дней.
II . Метод введения дополнительных данных.
Сущность метода заключается во временном (иногда постоянном) введении дополнительного объекта в условии задачи, без чего невозможно ее решение. Вот широко известная старинная задача:
Отец завещал трем своим сыновьям 19 лошадей. Старший сын должен получить 1/2, средний – 1/4 и младший – 1/5 всех лошадей. Когда отец умер, его сыновья никак не могли поделить лошадей, так как каждый из них должен был получить не целое число лошадей. Тут пришел им на помощь приятель отца. Как он помог им поделить лошадей?
Для этого он привел свою лошадь, так что оказалось всего 20 лошадей. Из них 10 лошадей получил старший брат, 5 – средний, 4 – младший. Оставшуюся лошадь приятель отца отвел домой. Все остались довольны.
Вот еще одна довольно интересная задача:
Одна библиотека переезжала в новое здание, однако средств на перевозку книг не было. И все же работники библиотеки нашли выход и перевезли книги практически бесплатно. Какой выход был найден?
В качестве дополнительного данного здесь были привлечены абоненты. Им предложили взять все книги домой, а когда библиотека переехала, принести их обратно.
III . Метод редукции (отбрасывание части данных).
Метод редукции заключается в следующем: если отбросить часть данных из условия задачи, то можно найти оптимальное решение (иногда – единственное). Иногда он применяется в комплексе с 1-м методом. Например:
Кузнецу принесли 5 обрывков цепи, по 3 звена в каждом, и попросили соединить их в одну цепь. Кузнец задумался, как выполнить этот заказ проще. Сколько же звеньев нужно разъединить, а затем вновь соединить, чтобы все обрывки образовали одну цепь? Подумав, кузнец приступил к делу и сделал заказ. Какое простое решение нашел кузнец?
Вместо того, чтобы расковать четыре обрывка, нужно три из них «отбросить», и полностью расковать лишь один. Получится три раскованных звена, которыми можно соединить четыре оставшихся обрывка (экономится 25% рабочего времени). Вот еще один пример:
Машина, груженная контейнером, подошла к арке. Контейнер не проходил сантиметров на 15. Вызвать кран – слишком хлопотно и накладно. Однако шофер нашел простой выход. Какой?
Здесь временно «отбрасывается» часть воздуха из колес. Таким образом, грузовая машина может опуститься вниз на 15 см и более.
IV . Метод поворота, метод сдвига.
Два метода близки между собой. Применение метода поворота предполагает мысленное или реальное изменение положения элементов условий относительно друг друга, иногда это изменение направления движения. При методе сдвига осуществляется мысленное (или реальное) смещение элементов относительно друг друга или объекта в целом относительно среды. Например:
Два любителя верховой езды затеяли необычный спор: выиграет тот, чья лошадь придет к финишу последней. После объявления старта всадники долго не решались сесть на лошадей. Тут к ним подошел прохожий и, узнав в чем дело, что-то тихо сказал. После этого всадники мгновенно вскочили на лошадей и быстро помчались к финишу. Что сказал им прохожий?
Ответ: «Поменяйтесь лошадями».
V. Метод переноса.
Метод заключается в применении знаний, правил из одной области в другую. Например, обычно, когда мы говорим о скорости, мы имеем в виду км/ч или м/с. непривычно звучит такое понимание скорости, как дом/год, бочонок/день. В науке и технике очень часто используются достижения не только смежных наук, но и казалось бы очень далеких. К примеру, множество технических решений подсказали живая природа, зоология, биология. И наоборот, в частности в медицине в последнее время стали применять математические модели болезней, развитие эпидемий и т.д. Например:
Один человек выпивает кадь питья в 14 дней, а с женой выпьет ту же кадь в 10 дней. За сколько дней жена одна выпьет эту кадь? (Задача Магницкого)
Задачу можно решить так: примем искомую величину за х и перенесем понятие скорость на квас – получится бочонок /день (б/д). Теперь можно написать уравнение 1/14 б/д + 1/х б/д = 1/10 б/д. Решив уравнение, легко находим х=35.
VI . Дискретный метод. Аналитический метод.
Дискретный метод заключается во временной остановке какого-либо действия, процесса. Метод широко применяется в науке и технике.
Аналитический метод (метод разложения) предполагает разложение объекта или явления на составные элементы с последующим (если это необходимо) синтезом. Анализ – один из важнейших процессов мышления вообще. Например:
Требуется поджарить 3 ломтика хлеба. На сковороде умещаются лишь два ломтика. На поджаривание ломтика с одной стороны требуется 1 мин. За какое кратчайшее время можно поджарить с двух сторон все 3 ломтика?
Решение. Сначала поджарим два ломтика с одной стороны, затем один из них перевернем, а второй отложим в сторону – на его место положим третий кусок. Поджарив полностью первый, перевернем третий, а на освободившееся место положим недожаренную сторону второго.
Таким образом, прервав технологический процесс» на одном из кусочков, сможем поджарить их не за 4 мин, а за 3 мин.
Второй пример.
Задача-фокус. Можно ли сделать в открытке прорезь, чтобы в нее пролез человек?
Ответ: можно.
VII . Парадоксы и софизмы.
Парадокс (в переводе с греческого – мнение) – это противоречивое высказывание.
В широком смысле парадокс – высказывание, истинность которого неочевидна; в этом смысле парадоксальными принято называть любые неожиданные противоречивые высказывания, особенно если неожиданность их смысла выражена в остроумной форме.
В физике широко известен «парадокс близнецов». Согласно которой один близнец остается на Земле, а второй улетает на космическом корабле со скоростью света. Спустя, допустим лет 20 он прилетает молодым, чем близнец, который остался на Земле. Парадокс заключается в том, что человечество еше не придумало такой корабль, который смог бы лететь с такой скоростью. (Лоренцево замедление времени из СТО)
В математике парадокс – ситуация, когда в данной теории доказываются два взаимоисключающих суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами, т.е. парадокс – высказывание, которое в данной теории равным образом может быть доказана и как истина, и как ложь. Например:
Крокодил украл ребенка; он обещал отцу вернуть ребенка, если отец угадает – вернет ему крокодил ребенка или нет. Что должен сделать крокодил, если отец скажет, что крокодил не вернет ему ребенка? (Дилемма крокодила).
Ответ: Крокодил попал в парадоксальную ситуацию. Действительно, если он вернет ребенка, то отец угадал, а значит, крокодил должен вернуть ребенка. Но если он вернет ребенка, то отец не угадал, а значит, крокодил не должен возвращать ребенка. Итак, парадокс налицо: формально рассуждая, крокодил не может ни вернуть ребенка, ни оставить себе.
Софизм (от греческого – хитрая уловка, измышление) – логически неправильное рассуждение (вывод, доказательство), выдаваемое за правильное. В математике софизм – умышленно ложное умозаключение с замаскированной ошибкой.
В житейских ситуациях, не различают софизмы и парадоксы. Например:
То, что ты не потерял, ты имеешь; ты не потерял рога, следовательно, ты их имеешь. (Древний софизм «Рогатый»).
Второй пример. Два равно трем.
Рассмотрим очевидное равенство

ar3.jpg
Отсюда, извлекая, квадратный корень, имеем:
ar4.jpg
Прибавляя к обеим частям этого равенства по 5/2, получаем, что 2=3. Где ошибка?
Ответ: при извлечении корня квадратного из обеих частей возможного равенства получаем неверный результат. Так как при любом, а справедливо равенство ar5.jpg, то правильным следствием должно быть верное равенство
ar6.jpg, а из него следует верное равенство ar7.jpg
Третий пример. Нет коней.
Дано уравнение х-а=0. Разделив обе части этого уравнения на х-а, получим, что 1=0. Поскольку это равенство неверное, то это означает, что исходное уравнение не имеет корней. Где ошибка?
Ответ: поскольку х=а – корень уравнения, то, разделив на выражение х-а обе его части, мы потеряли этот корень и потому получили неверное равенство 1=0.

Если у ребенка не развито логическое мышление, то он никогда не сможет понять информатику. Хочу привести еще один пример из Демо варианта ЕГЭ 2009 по информатике на логическое мышление (В6).
Классный руководитель пожаловался директору, что у него в классе появилась компания из 3-х учеников, один из которых всегда говорит правду, другой всегда лжет, а третий говорит через раз то ложь, то правду. Директор знает, что их зовут Коля, Саша и Миша, но не знает, кто из них правдив, а кто – нет. Однажды все трое прогуляли урок астрономии. Он вызвал всех троих в кабинет и поговорил с мальчиками. Коля сказал: «Я всегда прогуливаю астрономию. Не верьте тому, что скажет Саша». Саша сказал: «Это был мой первый прогул этого предмета». Миша сказал: «Все, что говорит Коля,- правда». Расположите первые буквы имен мальчиков в порядке: «говорит всегда правду», «всегда лжет», «говорит правду через раз».

Итак, мы рассмотрели основные приемы решения логических задач. Это отнюдь не окончательный список приемов, существуют еще множество приемов, в зависимости от условия и сложности задачи.
Рассмотренные типы задач помогают привить заинтересованность к предмету, делают его более интересным. Они решаются детьми может быть и в течение нескольких дней, но, поверьте, какое они удовольствие получают, если находят решение задачи сами, или в микрогруппах.
Также такие логические задачи можно рассматривать на занятиях кружка «Интеллектика», «Математическая логика» и т.д.



Использованная литература

  1. Мочалова О.Б. Типология творческих задач. Учебно-методическое пособие для студентов, учителей и учащихся. Уфа, 2001.
  2. Мочалова О.Б., Мочалова Н.М. Задачи на развитие сообразительности. Учебно-методическое пособие для учителей и учащихся. Уфа, 2001.
  3. Мочалова О.Б. Учимся рассуждать логически (шаг третий). Учебно-методическое пособие для учителей и учащихся. Уфа, 2001.
  4. Нестеренко Ю.В. и др. Задачи на смекалку. – М.: Дрофа, 2006.
  5. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка. – М.: Просвещение, 1988.
  6. Олехник С.Н., Нестеренко Ю.В., Потапов М.К. Старинные занимательные задачи. – М.: Дрофа, 2006.


05.06.2009
Автор Нурмухаматов Ильнур Ильдарович
Дата добавления 05.06.2009
Раздел Информатика
Подраздел
Просмотров 1632
Номер материала 1491
Скачать свидетельство о публикации

Оставьте свой комментарий:

Введите символы, которые изображены на картинке:

Получить новый код
* Обязательные для заполнения.


Комментарии:

↓ Показать еще коментарии ↓