Инфоурок Физика Рабочие программыОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К УЧЕБНОЙ ДИСЦИПЛИНЕ «ФИЗИКА»

ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К УЧЕБНОЙ ДИСЦИПЛИНЕ «ФИЗИКА»

Скачать материал

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

НАЧАЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ПРОФЕССИОНАЛЬНЫЙ ЛИЦЕЙ №13

МОСКОВСКОЙ ОБЛАСТИ

 

 

Рассмотрено на заседании                                                         « УТВЕРЖДАЮ» Методической комиссии                               Директор ГБОУ НПО ПЛ №13 МО

Протокол №4 от                                             ______________ / Калачанова Н.Б./ «17» декабря 2013 г.                                      «______» _______________ 2013 г. Председатель метод объединения                                                  

____________ Житкова А.А.                                       

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К УЧЕБНОЙ ДИСЦИПЛИНЕ

 

«ФИЗИКА»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

г. Раменское 2013г.

Введение

 

На современном этапе жизни общества физическое образование остается не только существенным фактором научно-технического прогресса, но и одним из условий общественного развития. Глубокие изменения претерпевает государственная политика в области образования: решается задача улучшения материальной базы образовательных учреждений, создаются новые учебные планы, программы и др. В настоящее время развернута работа по приведению в соответствие с требованиями социальноэкономического и научно-технического прогресса всего комплекса программных и инструктивных документов, учебных и методических пособий, созданию современного учебно-методического комплекса по физике. 

Основная цель обучения физике в образовательном учреждении - обеспечение прочного и сознательного овладения учащимися теоретических знаний, практических умений и навыков, позволяющих выполнять на практике различного рода задачи, упражнения, а также развития навыка самостоятельного поиска учащихся, когда для них открывается простор для творческого познания. 

Современному образовательному учреждения необходим учебнометодический комплекс по физике, позволяющий максимально использовать все имеющиеся возможности для усвоения информации, систематизировать научные сведения, оперативно закреплять полученные знания на практике. Качественный учебно-методический комплекс по физике должен обеспечивать системный подход к дидактическому процессу, освещать изучаемые вопросы с различных сторон.

Концептуальное обобщение опыта и теории учебно-методических комплексов изложено в работах В.Г. Бейлинсона, В.П. Беспалько, Е.В. Григорьевой, Д.Д. Зуева, И.Я. Лернера , А.Я. Микк, А.К. Пийримяги , Д.И. Трайгака и др. Согласно современным представлениям большинства исследователей учебно-методический комплекс по физике для учебного учреждения должен включать в себя следующие компоненты: календарнотематическое планирование; учебную программу изучаемой дисциплины, в которой перечислены этапы освоения материала; учебник (учебное пособие); задачник; пособие для лабораторных работ; справочные пособия; методические рекомендации по изучению учебной дисциплины: описание последовательности действий, советы по распределению времени, рекомендации по использованию имеющихся в наличии материалов; тестовые задания и другие учебные материалы; различные виды моделей, лабораторные стенды и установки и т.д. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОЦЕССУ

ФОРМИРОВАНИЯ ФИЗИЧЕСКИХ ПОНЯТИЙ

 

Содержание курса физики представляет собой систему взаимосвязанных понятий, составляющих основу знаний о свойствах вещества, физических полей, форм движения материи, поэтому формирование системы понятий - одна из главных задач обучения физике.

Процесс формирования физических понятий состоит в последовательном раскрытии качественных и количественных свойств предметов и явлений, доведенном до их словесного определения и сознательного практического использования.

Единого способа формирования понятий в процессе обучения нет, существуют различные способы, которые имеют общие черты: они так или иначе начинаются с чувственно-конкретного восприятия предмета или явления, а процесс их образования складывается из двух этапов.

Содержанием первого служит движение от чувственно-конкретного восприятия к абстрактному. Этот процесс завершается словесным определением понятия. Содержанием второго этапа является движение от абстрактного к конкретному. При этом происходит обобщение понятия, обогащение его содержания, раскрытие его связи и отношений с другими. К примеру, изучение понятия и явления теплопроводности основывается в начале на зрительном восприятии при помощи демонстрации, наблюдаемое явление объясняется новым понятием - дается его определение; после этого учитель указывает на разницу теплопроводностей различных веществ, тем самым, обогащая его содержание.

Одна из особенностей физического мышления - умение не только оперировать идеальными моделями науки, но и соотносить их с реальной действительностью. Поэтому необходимо усилить внимание к смысловому содержанию понятий. Рассмотрим, как это делается на различных этапах.

Этап, предшествующий изучению конкретной величины. Следует сформировать определенные представления о том, что такое "физическое величина" и зачем нужна. При изучении конкретных величин выделяются лишь существенные свойства, которые можно измерить с помощью эталонов. Следует обратить внимание, что физическое величина - идеальное понятие, отражающее количество определенного качества.

Этап введения величины. На этом этапе следует уделять внимание качественному определению физической величины, т.к. ее количественное определение закрепляется при решении задач. Каждая новая физическое величина должна быть отнесена к разряду физических величин, а затем нужно четко указать, какое именно свойство она характеризует.

Этапы закрепления и развития понятия. Включение качественных вопросов и решение задач.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 

К ПОДГОТОВКЕ К ЭКЗАМЕНУ

 

           Задачами обучения физике являются формирование у учащихся глубоких, прочных и действенных знаний, основ физики и их практических применений, знаний о методах естественнонаучного познания и структуре научного знания, развитие их мышления и т.д. Программа для специальностей 190631.01 «Автомеханик» и 150709.02 «Сварщик» (электросварочные и газосварочные работы) включает проведение экзамена, как итоговой формы оценки знаний учащихся. Поэтому необходимо организовать качественную подготовку учащихся к экзамену. Один из путей решения этих задач – организация специальной работы по обобщению и систематизации знаний.

Под систематизацией понимают мыслительную деятельность, в процессе которой изучаемые объекты организуются в определенную систему на основе выбранного принципа.

При систематизации осуществляются такие мыслительные операции, как анализ и синтез, сравнение и классификация, в ходе которых учащиеся выделяют сходство и различие между объектами и явлениями, группируют их в соответствии с выбранными признаками или основаниями, устанавливают причинно-следственные связи, сущностные отношения между объектами и явлениями. В процессе систематизации знаний устанавливаются не только смысловые, причинно-следственные, но и структурные связи, в частности связи между компонентами структуры элементов физического знания: связи внутри физических понятий, законов, теорий, картины мира. В этом случае решается задача формирования системности знаний учащихся.

Психологи отмечают, что знания учащихся более глубокие и прочные, если они прошли систематизацию и обобщение. Систематизация позволяет использовать память, так как освобождает ее от необходимости запоминать материал как сумму частных сведений и фактов за счет группировки их в более крупные единицы. Сам механизм восприятия информации человеком связан с деятельностью систематизации: при восприятии новой информации мы сопоставляем ее с уже известным знанием (ассоциация), стараемся сгруппировать новую информацию.

Использование систематизации не только упорядочивает знания человека об объектах познания, но и служит источником новых знаний. Учитель должен познакомить учащихся с приемами систематизации, чтобы они могли применять их самостоятельно. Систематичность – это такое качество знаний, которое характеризуется в сознании ученика наличием логических связей между компонентами изучаемых явлений. Отбор учебного материала идет с учетом системы: изучается ряд явлений, связанных между собой, и одновременно с учетом принципа «от простого к сложному». В каждом разделе учебная информация систематизируется вокруг стержневых понятий. Например, в механике – точка, тело, вещество, поле, взаимодействие, энергия.

Методологической основой систематизации знаний учащихся является принятый в науке системный подход - методологическое средство изучения интегрированных объектов и интегральных зависимостей и взаимодействий, который позволяет, с одной стороны, дать общее представление о процессе, явлении, объекте, а с другой стороны, увидеть их компоненты, связи между ними, место данной системы в составе другой, более сложной.

Объективной научной основой систематизации знаний учащихся является особенности физической науки и физики - учебного предмета, отличающейся логической стройностью, как самого научного знания, так и процесса его становления.

Дидактической основой систематизации знаний учащихся являются закономерности усвоения учащимися знаний и способов деятельности, отраженные в принципе систематичности и последовательности в обучении, а также в принципе системности.

Психологической основой систематизации знаний учащихся является образование ассоциативных связей: локальных, частносистемных, внутрисистемных и межсистемных. В-первых трех случаях систематизация носит, главным образом, внутрипредметный характер; в четвертом – межпредметный. Соответственно можно выделить несколько объектов систематизации знаний по физике:

-                      научные факты (явлений, процессов);

-                      физические понятия, в том числе физических величин;

-                      физические законы;

-                      физические теории;

-                      общенаучные методологические принципы; - физическая картина мира.

Помимо этого, может осуществляться систематизация знаний на основе тех или иных стержневых идей курса, в частности, целесообразна систематизация прикладных знаний в соответствии с основными направлениями научно-технического прогресса, мировоззренческих и методологических знаний в соответствии с циклом научного познания или на основе философских категорий материи, движения, пространства-времени, взаимодействия, представления о которых развиваются по мере изучения курса.

В случае систематизации знаний на межпредметном уровне речь должна пойти об общих естественнонаучных понятиях, законах, теориях и картине мира.

Объект систематизации зависит от того, на каком этапе изучения курса физики ее проводят. Так, в конце изучения темы систематизируют знания о физических явлениях, понятиях, величинах и законах; в конце изучения разделов – о физических теориях; в конце изучения курса – о физической картине мира; перед подачей нового материала важно обобщить изученное на прошлых уроках.

Дидактическая роль систематизации знаний заключается в том, что объединение в систему знаний о фактах, явлениях, закономерностях, принципах позволяет раскрыть новые, неизвестные учащимся до этого связи и отношения между ними, сделать обобщения мировоззренческого характера и превращает систематизацию в средство познания. Уровень сформированности у учащихся системы знаний является важным показателем их интеллектуального развития, он определяет возможности учащихся справляться с новыми познавательными задачами, перестраивать знания, включать их в новые системы, т.е. служит показателем возможности учащихся осуществлять творческую деятельность. В процессе систематизации внимание и деятельность учащихся направлены на выделение главного, на объединение множества изолированных фактов в группы, что позволяет упорядочить знания, разгрузить память, более полно охватить и осмыслить информацию. При этом часто происходит обобщение знаний учащихся, заключающееся в мыслительном объединении предметов и явлений, сходным по каким–либо признакам. Обобщение предполагает первоначальное изучение объектов, выделение в них общего и особенного, объединение их в группы по отобранным признакам, разделение на виды и т.д.

Обобщение знаний – переход на более высокую ступень абстракции путем выделения общих признаков (свойств, отношений, связей и т.п.) объектов и явлений. Обобщение знаний приводит к существенному изменению их качества, к усвоению ядра знаний, их системы. В этом смысле обобщение тесно связано с принципом генерализации, который предполагает, что результатом обучения учащихся является такая система знаний, в которой частное подчинено общему, несущественное и второстепенное – главному.

Обобщению знаний и умений учащихся по физике способствуют так называемые обобщенные планы изучения тех или иных элементов знаний, формирование тех или иных экспериментальных умений.

Существуют несколько видов систематизации знаний. Важнейшим является классификация – вид систематизации, при котором объединение объектов происходит на базе определенных существенных признаков, что позволяет выделить существенное, общее, что объединяет объекты в систему, и их специфические различия.

Другим видом систематизации является установление логикогенетических связей, отраженных в определении понятий.

Систематизация знаний может быть направлена на установление причинно-следственных связей между явлениями. В частности, после изучения первоначальных сведений о строении вещества учащимся можно предложить объяснить ряд явлений на основе тех или иных положений молекулярно-кинетической теории и составить соответствующую таблицу. При изучении электрического поля очень часто учитель обращается к установлению причинно-следственных связей, к примеру, при изучении реостата и принципа его действия.

Систематизация может осуществляться путем сравнения, т.е. установления сходства, различия или аналогии между объектами и явлениями. При этом сходство или различие не только устанавливается, но и объясняются их причины. Примером может служить сопоставление электростатического и гравитационного полей, электростатического и магнитного и т.п. Результаты работы по обобщению и систематизации знаний могут быть оформлены в виде таблиц, схем, диаграмм, опорных конспектов.

Систематизация и обобщение тесно связаны в процессе переработки получаемой учебной информации. Естественные процессы систематизации и обобщения получаемой информации, протекающей стихийно у школьников учитель должен использовать. Такая необходимость объясняется тем, что резко возрастающий поток информации, предъявляемый прежним способом, учащиеся не успевают переработать, усвоить, что снижает успеваемость и вызывает потерю интереса к предмету и учению. Можно отметить несколько подходов при проведении систематизации и обобщения:

-                      прежде всего, выясняя «что обобщаем», Бетев В.А. выделяет три направления – изучаемые объекты, символы, понятия;

-                      рассматривая средства обобщения, выделяют схемы, таблицы, графы, системы уравнений, классификации с установлением причинноследственных связей;

-                      говоря о времени, можно указать – на каждом уроке, после изучения темы или раздела, в конце учебного года на обобщающих уроках;

-                      форма предъявления - учитель сам проводит систематизацию и обобщение на уроке; выполняет это вместе с учащимися на занятии; выдает подобное задание учащимся для самостоятельного выполнения в классе или дома.

Вооружение учащихся системой знаний является одной из важнейших задач обучения физике. В дидактике давно провозглашен принцип систематичности и последовательности в обучении. Он предполагает: а) изучение материала в определенной последовательности, соответствующе логике науки, основы которой изучаются в школе; б) формирование у школьников системы научных понятий, умений и навыков. Этот принцип лежит в основе построения учебных программ, определяет систему работы учителя и деятельности учащихся в процессе обучения.

Систематизация не сводится к классификации. К систематизации приводит также установление причинно-следственных связей и отношений между изучаемыми фактами, выделение основных единиц материала, что позволяет рассматривать конкретный объект как часть системы. Систематизации предшествует анализ, синтез, обобщение, сравнение, результаты которых используются и подытоживаются в систематизации.

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 

ПО ПОДГОТОВКЕ К ЗАЧЕТУ

 

1.   Систематизация курса механики

При обучении механике решаются определенные образовательные, воспитательные задачи и задачи развития учащихся. Образовательные задачи определяются прежде всего тем, что в механике вводят основные понятия (масса, сила, импульс тела, энергия и т.д.), являющиеся «инструментом» познания в науке – физике. В этом смысле механику справедливо считать фундаментом физики. В механике учащиеся знакомятся с физической теорией – классической механикой Ньютона и такими обобщениями, как закон Всемирного тяготения, законы сохранения импульса и энергии, общие условия равновесия механических систем.

Воспитательные задачи (формирование научного мировоззрения) решаются путем диалектико-материалистического взгляда на природу и ее познание, формирование политехнических знаний и умений (знание научных основ современной механизации промышленности, транспорта и сельского хозяйства), раскрытия на уроках физики основных направлений развития и ускорения в современном производстве, воспитание патриотизма и интернационализма, трудового воспитания. Основа трудового воспитания на уроках физики при изучении механики – политехническое обучение, в процессе которого обучающихся знакомят с одним из основных направлений современного производства – механизацией. Учащиеся узнают о простых механизмах, различных видах передачи движения, законах движения и др. При проведении лабораторных работ они осваивают некоторые практические умения в обращении с измерительными приборами. Трудолюбию воспитывают и работы ученых и изобретателей.

Решение задач развивающего обучения при изучении механики направлено на развитие логического, теоретического, научно-технического, диалектического и, следовательно, на развитие их интеллекта и творческих способностей. Стройна и логика механики, широкая опора в механической теории на такие общие методы познания, как анализ и синтез, индукция и дедукция, способствуют развитию логического мышления обучающихся. Наличие научных обобщений в механике способствует формированию теоретического мышления, особенность которого состоит в умении выделить главное, отражаемое в абстракциях, и извлекать из последних конкретные выводы, переходя от общего к частному. В механике обучающиеся встречаются с большим числом абстрактных понятий – материальная точка, система отсчета, равномерное и равноускоренное движение и др. При рассмотрении этих понятий учащихся учат выделять существенные признаки явлений и объектов, отбрасывать несущественные, показывают, как возникает идеализация в науке, как происходит абстрагирование.

Обращение к физической теории (классической механике Ньютона) способствует формированию у школьников представлений о физической картине мира – одной из наиболее общих форм отражения природы физической наукой и одного из компонентов научного мировоззрения, показывает диалектику взглядов на физическую картину мира и место механической теории в этой картине. При изучении основных обобщений (закон Всемирного тяготения, законы сохранения импульса и энергии, общие условия равновесия и др.) разъясняют учащимся, что объективность научных обобщений подтверждается применением последних в практической деятельности людей (механика космических полетов, движение машин и их частей, реализация условий равновесия в технических сооружениях). Изучение причин изменения скорости движения и деформации способствует раскрытию причинно-следственных связей. Определение границ применимости классической механики помогает проиллюстрировать познаваемость природы и безграничность процесса познания. Все это способствует формированию диалектического мышления.

Рассмотрим основные особенности курса механики. Первая особенность заключается в том, что с механики начинается изучение курса физики. Это определяет место механики в общеобразовательном курсе физики и требует от учителя внимания к прочному усвоению учащимися материала. Вторая особенность состоит в том, что в механике достаточно полно представлена физическая теория. Поэтому учителю предоставляется возможность на примере механики проиллюстрировать структуру физической теории. И третья особенность – использование эксперимента в преподавании механики.

На этапе обобщения и систематизации знаний по курсу механики нужно обратиться к следующей таблице. Таким образом, повторение и закрепление материала будет сопровождаться образованием многосторонних связей между изученным материалом и на основе проблемных вопросов и решения познавательных задач. Можно, конечно, записать все известные формулы и сформулировать основные законы, хотя эту работу нужно предложить в качестве опережающего домашнего задания, а можно разнообразить деятельность составлением ситуативных таблиц по теме или использовании готового материала. Удобство таблицы очевидно: обобщение и повторение сводится не к формальному восстановлению имеющихся знаний, а построению замкнутого образа рассматриваемых явлений и процессов.

Обобщающая таблица №1: «Кинематика материальной точки»

Кинематика материальной точки

 

 

Вид движения

Равномерное прямолинейное движение

Равнопеременное движение

Свободное падение

Движение в поле сил тяжести

Периодиче ское движение

Уравнения движения

υ= const x=x0 + υx t

 

a= const υx=υ0x+ax t x=x0+υ0xt+

axt²/2

y=gt²/2 υy=g t

 

 

x=(υ0cosα)t y=(υ0sinα)t υx=υ0cosα υy=υ0sinα

T=2πr/υ T=2π/ω ν= 1/T υ= ωr

График перемещения

s

  t

s

  t

s

  t

s

t

 

Ключевые понятия

Траектория - …

 

Перемещение - …

 

Путь - …

 

Скорость                                  Среднепутевая -…

 

                                     Мгновенная - …

 

Ускорение - …

 

 

 

 

 

 

 

 

 

 

 

 

 

Таблица №2: «Законы Ньютона»

Законы Ньютона

Параметр

Первый закон

Второй закон

Третий закон

Физическая система

Макроскопическое тело

Система двух тел

 

Модель

Материальная точка

Система из двух материальных точек

Суть закона

Постулирует существование инерциальной системы отсчета (если ∑F=0, то υ=const)

Взаимодействие определяет изменение скорости ∆ υ, т.е. ∑F= ma

Силы действия и противодействия равны по модулю, противоположны по направлению, приложены к разным телам, имеют одну и ту же природу: F12 = -

F21

Примеры проявления

Движение космического корабля вдали от притягивающих тел

Движение планет, падение тел на землю, торможение и разгон автомобиля

Взаимодействие тел:

Солнца и Земли, Земли и Луны, бильярдных шаров

Границы применимости

Инерциальные системы отсчета. Макро-и-микромир. Движение со скоростями много меньше скорости света

 

2. Систематизация курса молекулярной физики

В разделе «Молекулярная физика» учащиеся изучают поведение качественно нового материального объекта: системы, состоящей из большого числа частиц (молекул и атомов), новую, присущую именно этому объекту форму движения (тепловую) и соответствующий ей вид энергии. Здесь учащиеся впервые знакомятся со статистическими закономерностями, которые используют для описания поведения большого числа частиц. Формирование статистических представлений позволяет понять смысл необратимости тепловых процессов.

Задача учителя рассмотреть в единстве два метода описания тепловых явлений и процессов: термодинамический, основанный на понятии энергии, и статистический, основанный на молекулярно-кинетических представлениях о строении вещества. При рассмотрении статистического и термодинамического методов необходимо четко разграничить знания, полученные в результате моделирования внутреннего строения вещества и происходящих с ним явлений и процессов. Важно показать, что эти два подхода, по сути, описывают с разных точек зрения состояние одного и того же объекта и потому дополняют друг друга.

Мировоззренческое значение раздела трудно переоценить, при его изучении происходит углубление понятия материи. Молекулы и атомы являются вещественной формой материи, объективно существующей в окружающем мире. Они обладают массой, импульсом, энергией. Являясь видом материи, молекулы и атомы имеют присущие материи свойства, одно из которых – движение. Частицы участвуют в особом движении – тепловом, которое отличается от простейшего механического движения большой совокупностью участвующих в нем частиц и хаотичностью. Тепловое движение описывается статистическими законами. В связи с этим важно показать школьникам различие между статистическими и динамическими закономерностями, соотношение между ними и обратить внимание учащихся на отражение в этих закономерностях категорий случайного и закономерного.

Велико политехническое значение этого раздела курса физики. Достижения молекулярной физики являются научной основой материаловедения. Знание внутреннего строения тел позволяет создать материалы с заранее заданными свойствами, целенаправленно работать над твердостью, термостойкостью, термостойкостью сплавов и металлов.

Раздел «Молекулярная физика» изучается после раздела «Механика», что соответствует методическому принципу рассмотрения физических явлений в порядке усложнения форм движения материи и позволяет изучать микроявления на количественном уровне и использовать известные из курса механики величины: масса, скорость, сила, импульс, энергия и т.д.

Таблица № 3: «Термодинамические явления»

 

3. Систематизация раздела «Электродинамика»

Раздел «Электродинамика» - один из самых сложных разделов курса, где изучают электрические, магнитные явления, электромагнитные колебания и волны, вопросы волновой оптики и элементы специальной теории относительности.

Решение общеобразовательных задач при изучении этого раздела сводится к тому, что в данном разделе должно быть введено основное для современной физики понятие электромагнитного поля, а также физические понятия: электрический заряд, электромагнитные колебания, электромагнитная волна и ее скорость. Здесь же должно быть введено основное для современной физики представление о свойствах электромагнитных волн, их распространении, о принципах радиосвязи, телевидения. Учащиеся на доступном им уровне знакомятся с фундаментальной теорией – теорией макроскопической электродинамики, основным творцом которой был Дж. Максвелл.

Решение воспитательных задач сводится к дальнейшему развитию научного мировоззрения учащихся, их материалистического и диалектического понимания природы. При изучении раздела «Электродинамика» происходит расширение и углубление в сознании школьников понятия материи. В базовом курсе учащиеся познакомились с двумя видами поля: электрическим и магнитным, но не изучались их характеристики. Здесь они встречаются с особым видом материи – электромагнитным полем, познают его отличие от вещества. При рассмотрении основ специальной теории относительности учащиеся знакомятся с современными физическими представлениями о пространстве и времени.

Политехнические знания школьников пополняются знаниями физических основ электрификации и электроэнергетики. Они приобретают некоторые умения и навыки обращения с различными электроприборами. Решение развивающих задач при изучении данного раздела направлено на дальнейшее развитие логического, теоретического, научно-технического, диалектического мышления, а в итоге – развитии интеллекта и творческих способностей.

Учащимся необходимо объяснить диалектику развития взглядов на физическую картину мира: ограниченность механического взгляда и электродинамического подхода к описанию природы. Определение границ применимости макроскопической электродинамики помогает проиллюстрировать познаваемость природы и безграничность процесса познания, что способствует формированию диалектического мышления.

В программе раздел «Электродинамика» следует после раздела «Молекулярная физика». Такой подход сложился исторически, но возможны и другие варианты построения курса физики. Материал электродинамики, например, можно рассматривать непосредственно после механики, это позволит подчеркнуть ограниченность механических представлений и раскрыть особенности электродинамики.

Если рассматривать логическую структуру раздела, то в ней надо выделить: формирование понятия электромагнитного поля и электрического заряда; изучение взаимодействия поля и вещества, электрических, магнитных и световых свойств вещества; изучение законов тока, электрических цепей; знакомство с элементами СТО; показ основных технических применений электродинамики (схема 1).

                            Схема №1. «Взаимодействия поля и вещества»

Электрическ ие свойства вещества

 

Магнитные свойства вещества

 

Оптические свойства вещества

 

Электрическая проводимость различных сред

 

Курс электродинамики отличается абстрактностью и сложностью учебного материала, поэтому значительное внимание в ее преподавании следует уделить наглядности: физический эксперимент, аналогии и модельные представления, включая модели на ЭВМ, экранные пособия, схемы, чертежи, таблицы и т.д. При изучении основ электродинамики применяют следующие модели: свободный электрон, модель электронного газа, модель проводника и диэлектрика. Широко применяются аналогии: между гравитационным и электростатическим полями, между электрическим током и потоком жидкости; между явлением самоиндукции и инерции; между явлением термоэлектронной эмиссии и испарением жидкости. Аналогии лишь частично отражают сходство данного явления или понятия с изученным материалом, а модели вносят те или иные упрощения в поведении материальных объектов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 

К РЕШЕНИЮ ЗАДАЧ ПО ФИЗИКЕ

 

1. Виды задач и способы их решения

Задачи по физике разнообразны по содержанию, и по дидактическим целям. Их можно классифицировать по различным признакам.

По способу выражения условия физические задачи делятся на четыре основных вида: текстовые, экспериментальные, графические и задачи рисунки.

Каждый из них, в свою очередь, разделяется на количественные (или расчетные) и качественные (или задачи вопросы). В то же время основные виды задач можно разделить по степени трудности на легкие и трудные, тренировочные и творческие задачи и другие типы.

В учебном процессе по физике наиболее часто используют текстовые задачи, в которых условие выражено словесно, текстуально, причем в условии есть все необходимые данные, кроме физических постоянных. По способам решения их разделяют задачи - вопросы, и расчетные

(количественные).

При решении задач-вопросов требуется (без выполнения расчетов) объяснить, что то или иное физическое явление или предсказать, как оно будет протекать в определенных условиях.

Как правило, в содержании таких задач отсутствуют числовые данные.

Отсутствие вычислений при решении задач-вопросов позволяет сосредоточить внимание учащихся на физической сущности. Необходимость обоснования ответов на поставленные вопросы приучает школьников рассуждать, помогает глубже осознать сущность физических законов. Решение задач-вопросов выполняют, как правило устно, за исключении тех случаев, когда задача содержит графический материал. Ответы могут быть выражены и рисунками.

К задачам-вопросам тесно примыкают задачи - рисунки. В них требуется устно дать ответы на вопрос или изобразить новый рисунок, являющийся ответом на рисунок задачи. Решение таких задач способствует воспитанию у учащихся внимания, наблюдательности и развитию графической грамотности.

Количественные задачи - это задачи, в которых ответ на поставленный вопрос не может быть получен без вычислений. При решении таких задач качественный анализ так же необходим, но его дополняют еще и количественным анализом с подсчетом тех или иных числовых характеристик процесса.

Количественные задачи разделяют по трудности на простые и сложные.

Под простыми задачами понимают задачи, требующие несложного анализа, и простых вычислений, обычно в одно - две действие. Для решения количественных задач могут быть применены разные способы: алгебраический, геометрический, графический.

Алгебраический способ решения задач заключается в применении формул и уравнений. При геометрическом способе используют теоремы геометрии, а при графическом - графики.

В особый тип выделяют задачи межпредметного содержания отражающие связь физики с другими учебными дисциплинами. В задачах с историческим содержанием обычно используют факты из истории открытия законов физики или каких-либо изобретении. Они имеют большое познавательное воспитательное значение.

Эксперимент в задачах используют по разному. В одних случаях из опыта, проводимого на демонстрационном столе, или из опытов, выполняемых учащимися самостоятельно, находят данные необходимые для решения задачи. В других случаях задача может быть решена на основе данных, указанных в условиях задачи.

Опыт в таких случаях используют для иллюстрации явлений и процессов, описанных в задаче, или для проверки правильности решения. Но если эксперимент применяется только для проверки решения, задачу неправомерно называть экспериментальной. Существенным признаком экспериментальных задач является то, что при их решении и данные берутся из опыта.

В процессе решения экспериментальных задач у учащихся развивается наблюдательность, совершенствуются навыки обращения с приборами. При этом школьники глубже познают сущность физических явлений и законов.

В графических задачах в процессе решения используют графики. По роли графиков в решении задач различают такие, ответ на который может быть получен на основе анализа уже имеющего графика, и в которых требуется графически выразить функциональную зависимость между величинами.

Решение графических задач способствует уяснению функциональной зависимости между величинами, привитию навыков работы с графиком. В этом их познавательное и политехническое знание.

Физические задачи, в условии которых не хватает данных для их решения называют задачами с неполными данными. Недостающие данные для таких задач находят в справочниках, таблицах и в других источниках. С такими задачами учащиеся будут часто встречаться в жизни, поэтому решение в школе подобных задач очень ценно. Для того, чтобы проявить учащимся интерес к решению задач необходимо их умело подбирать. Содержание задач должно быть понятным и интересным, кратко и четко сформулированным. Математические операции в задаче не должны затушевывать ее физический смысл, необходимо избегать искусственности и устаревших числовых данных в условиях задач. Начинать решение задач по темам нужно с простейших, в которых внимание учащихся сосредотачивается на закономерности, изучаемой в данной теме, или на уточнении признаков нового понятия, установлении его связи с другими понятиями. Затем постепенно следует переходить к более трудным задачам.

 

2. Аналитико-синтетический метод в решении физических задач

 

Аналитико-синтетический метод - основной метод решения задач по физике в средней школе во всех классах. Удачное применение его в учебном процессе позволяет вести учащихся по правильному пути отыскания решения задачи, и способствует развитию их логического мышления.

В методических пособиях по физике довольно часто анализ, и синтез рассматривают как два самостоятельных метода. При решении физических задач используют анализ и синтез, взятые в совокупности, т.е. практически применяют аналитико-синтетический метод. При этом методе решения путем анализа, начиная с вопроса задачи, выясняют, что надо знать для ее решения, и, постепенно расчленяя сложную задачу на ряд простых, доходят до известных величин, данных в условии. Затем с помощью синтеза рассуждения проводят в обратном порядке: используя известные величины, и подбирая необходимые соотношения, производят ряд действий, в результате которых находят неизвестное. Поясним это на примере следующей задачи: "Найдите давление на почву гусеничного трактора массой 10 т, если длина опорной части гусеницы 2 м, а ширина 50 см".

Анализ: Чтобы определить давление трактора на почву, надо знать действующую на него силу тяжести, и площадь опоры. Сила тяжести в задаче не дана, площадь опоры не указана. Для определения общей площади опоры, т.е. площади опорной части двух гусениц, надо узнать площадь опоры одной гусеницы и умножить ее на два. Площадь одной части одной гусеницы можно определить, так как известны ее ширина и длина. Силу тяжести, действующую на трактор, можно найти по известной его массе.

Синтез: Рассуждение ведут в обратном порядке, в его ходе составляют план решения и производят необходимые вычисления. Последовательность рассуждения примерно следующая. Зная ширину длину опорной части гусеницы, можно определить опорную площадь одной гусеницы. Для этого надо длину на ширину. Зная опорную площадь одной гусеницы, можно определить общую площадь опоры трактора. Для этого надо найденную площадь, т.е. площадь опорной части одной гусеницы, умножить на два. Зная массу трактора, находят силу тяжести, действующую на него. По силе тяжести и площади опоры можно определить давление трактора на почву.

Для этого силу тяжести надо разделить на площадь опоры.

 

3. Методика решения качественных задач

 

Как уже было сказано выше, задачи-вопросы решают устно. Чтобы воспитать у учащихся навык сознательного подхода к решению качественных задач, нужна определенная система работы с ними учителя и продуманная методика обучения. Немалое значение имеет правильный подбор задач. Наиболее доступны на первых порах задачи, в которых предлагается дать объяснение явлением природы, или фактам, известным учащимся из личного опыта. В них учащиеся увидят связь с жизнью.

В целях расширения политехнического кругозора учащихся нужно уже 5 класса вводить с условия задач новые для учащихся сведения, включая технические. Важно учитывать при подборе задач характер производственного окружения школы и местные условия.

Решение качественных задач включает три этапа: чтение условия, анализ задачи и решение.

При анализе содержание задачи используют прежде всего общие закономерности, известные учащимся по данной теме. После этого выясняют, как конкретно должно быть объяснено то явление, которое описано в задаче. Ответ к задаче получают как завершение проведенного анализа.

В качественных задачах анализ условия тесно сливается с получением нужного обоснованного ответа.

Пример:

Реактивный двигатель совершает работу при перемещении ракеты. В следствии этого энергия ракета возрастает.

Пусть Е1 - механическая энергия ракеты в начальный момент времени;

А - работа, совершенная двигателем за некоторый промежуток времени;

Е2 - механическая энергия ракеты конечный момент времени.

Тогда можно утверждать, что изменение механической энергии тела равно работе внешней силы.

 

Е2 - Е1 = А,

 

или

 

Е2 = Е1 + А.

 

В данном примере работа, совершенная двигателем, положительная.

Поэтому энергия ракеты возрастала.

 

4. Методика решения количественных задач

 

Решение сложных количественных задач на уроке складывается обычно из следующих элементов: чтения условия задачи, краткой записи условия и его повторения, выполнения рисунка, схемы или чертежа, анализа физического содержания задачи и выявления путей (способов) ее решения, составления плана решения и выполнения решения в общем виде, прикидки и вычисления, анализа результата и проверки решения.

Чтение и запись условия задачи.

Текст задачи следует учителю читать неторопливо, четко. Затем кратко записать условие и сделать чертеж или схему. Условие нужно еще раз повторить.

Анализ условия.

При разборе задачи прежде всего обращают внимание на физическую сущность ее, на выяснения физических процессов, и законов, рассматриваемых в данной задаче, зависимостей между физическими величинами.

Нужно терпеливо, шаг за шагом приучать учащихся, начиная с седьмого класса, проводить анализ задачи для отыскания правильного пути решения, так как это способствует развитию логического мышления, учеников, и воспитывает сознательный подход к решению задач.

Разбор задачи на уроке часто проводят коллективно в виде беседы учителя с учащимися, входе которого учитель в результате обсуждения логически связанных м/у собой вопросов постепенно подводит учащихся к наиболее рациональному способу решения задач. Иногда полезно разобрать несколько вариантов решения одной и той же задачи, сопоставить их, и выбрать наиболее рациональный. Нужно систематически приучать учащихся самостоятельно анализировать задачи, требуя от них вполне сознательного и обоснованного рассуждения.

Решение задачи.

После разбора условия задачи переходят к ее решению. Решение задачи необходимо сопровождать краткими пояснениями.

Ответ задачи рекомендуется выделить, например подчеркнуть его. Все это приучать школьников к четкости и аккуратности в работе.

Проверка и оценка ответов.

Полученный ответ задачи необходимо проверить. Прежде всего нужно обратить внимание учащихся на реальность ответа. В некоторых случаях при решении задачи ученики получают результаты, явно не соответствующие условию задачи, а иногда противоречащие здравому смыслу. Происходит это от того, что в процессе вычислений они теряют связь с конкретным условием задачи.

Необходимо научит школьников оценивать порядок ответа не только с математической, но и с физической точки зрения, чтобы ученики сразу видели абсурдность таких, например, ответов: кпд какого либо механизма больше ста процентов, температура воды при обычных условиях меньше 0  или больше 100, плотность железа 78 р/см3.

Ученики должны усвоить, что правильность решения задачи можно проверить, решив ее другим способом и сопоставить результаты этих решений, а также выполнив операции с наименованиями единиц физических величин и сравнив ответ с тем наименованием, которое должно получиться в задаче. Чтобы проверить правильность найденного решения в общем виде над в формулу, выражающую решение, вместо буквенных обозначений величин подставить наименования единиц физических величин и произвести с ними те же операции, которые выполнялись бы с вычислениями. Пусть, например, мы нашли формулу для определения осадки "корабля, банки". Для проверки решения вместо букв подставляем единицы физических величин. В результате получаем (М) (метр), т.е. наименование единицы длины, что и соответствует условию задачи.

Пример:

Задача. С высоты h=2м над землей со скоростью v0=4м/с бросают шар в горизонтальном направлении. Определить время падения шара на землю: дальность полета, скорость тела через 0,2 секунд после начала движения.

Дано: v0 = 4 м/с, h = 2 м, t= 0,2 с, q = 9,8 м/с, t - ?, l - ?

Решение: Движение шара сложное: по горизонтали – равномерное, по вертикали – свободное падение. Воспользуемся принципом не зависимости движений. Найдем время, которое тело падало бы отвесно с высоты h = 2 м.

При свободном падении: => = 0,63 с. Поскольку движение по горизонтали, в котором участвует шар, и по вертикали не зависимы, в то время падения шара окажется таким же:

За время падения шар, двигаясь равномерно по горизонтали, пролетит:

 

Smax= v* t=2.5 м

 

Принцип независимости движений позволит выполнить и третье задание – определить значение скорости шара через 02 с. Если бы тело двигаясь только вдоль оси ОХ, то его скорость осталось бы неизменной, равной vх=4м/с.Если бы тело лишь падало отвесно, то за время 0,2 с оно, согласно формуле свободного падения, набрало бы скорость:

vу=qt=9/8м/с2 0,2с=2м/с.

 

Результирующая же скорость шара находится по правилу сложения векторов.

Применив теорему Пифагора получаем:

 

 

 

5. Способы записи условия и решения задач

 

Можно применять различные формы записи условия задачи, но любая из них должна удовлетворять основным требованиям краткости и ясности.

В отношении записи решения задач по физике учителя предъявляют к учащимся различные требования. Одни, например, требуют проводить запись решения с планом, другие с кратким пояснением, а третьи ограничиваются только вычислениями.

Поясним сказанные на конкретных примерах задач, для 7-8 классов.

Задача 1

Прямоугольный бассейн площадью 250 м2 и глубиной 4 м наполнен морской водой. Каково давление воды на его дно?

 

Дано: S = 250 м2, h = 4 м,  = 1030 кг/м3, F - ? P - ?

Решение: Сила, с которой вода давит на дно сосуда, равна силе тяжести, действующей на воду;

 

F = Fт; Fт = qm;

m = PV; V = Sh = 250 м2* 4 м = 1000 м3; m = 1030 кг/м3 * 1000 м3 = 1030000 кг.

F = Fт = 9,8 Н/кг * 1030000 кг = 10000000 H =107 H

Давление Р = F/S = 10000000/150 м2 = 40000 Н/м2 = 4*104 Па.

Ответ: P = 4 * 104 Па.

 

Задача 2

Опорные башмаки шагающие экскаватора представляют собой две пустотелые банки длиной 16 см, и шириной 2,5 м каждая. Определите экскаватора на почву, если масса его составляет 1150 кг.

 

Дано:

  

Решение:

1.    

2.    

3.    

4.   .

Ответ: .

 

Задача 3

Сколько сухих дров надо сжечь в кормозапарнике, чтобы нагреть воду массой 100 кг от 10  C до кипения? КПД кормозапарнике 15?

 

Дано:  

 

Решение:

1.   Количество теплоты, необходимое для нагревания воды:

 

 

2.   Количество теплоты, выделяемое при сгорании дров:

n=0,15 * Q=ggp * mgp

 

3.   Запишем формулу для n и из полученного уравнения найдем

 

Отсюда

.

Вычисления:

 

 

Ответ:  

Ответ задачи реален, опыт подсказывает, что примерно такую массу дров надо сжечь для нагревания воды нужной нам массы. Заметим ещё, что задачи, в которых задан КПД, лучше всего начинать решать с записи формулы КПД:

 

 

Откуда 

 

Задача 4

К батарее, дающей напряжение 24В, подсоединены последовательно две лампы по 15 Ом и электрический звонок. Сила тока в цепи равна 0,3 А.

Определите сопротивление звонка.

 

Дано: V=24, В n=2, R=15 Ом, I=0,3 А,  

 

Решение:

1-й способ:

 

1.   , т.к. соединение приемников последовательное.

2.   )

3.    

Вычисление:  

 

2-й способ:

 

1.    (закон Ома)

2.   , т.к. соединение проводников последовательное

3.   Вычисление:

Ответ: .

 

6. Методика решения экспериментальных задач

 

Методы решения экспериментальных задач в значительной мере зависит от роли эксперимента в их решении. В других типах экспериментальных задач ярко выступает их специфика, и поэтому методика решения, и оформления имеет свои особенности.

Решение и оформление экспериментальной задачи расчетного характера складывается из следующих элементов: постановка задачи, анализ условия, измерения, расчет, опытная проверка ответа.

Постановка задачи. На столе имеется прям-я жестяная банка, весы, гири, масштабная линейка, сосуд с водой, песок. Для обеспечения вершинного положения банки при плавании ее немного погружают песком.

Определите глубину осадки банки при ее погружении в воду.

В данном случаи условие задачи можно выразить рисунком с подписью вопроса под ним. Затем переходят к анализу, выясняют, какие изменения необходимо выполнить для решения задачи.

Анализ. Ванна будет погружаться в воду до тех пор, пока сила тяжести, действующая на нее вместе с песком, не уравновесится вытаннивающей силой воды, действующей на банку снизу. В этом случаи . Но т.к. Архимедова сила  равна весу вытесненной телом жидкости, то , где Vв – объем погруженной части банки,  - плотность воды.

Объем погруженной части равен произведению площади основания (S) на глубину погружения в воду (h). Следовательно,

FA=qPв hS

Откуда

 

 (1).

 

Из формулы (1) видно, что для решения задачи надо знать вес банки с песком, плотность воды и площадь основания банки.

Измерения. Измеряют вес F банки с песком с помощью динамометра.

Измеряют дину l и ширину a основания. Определяют площадь основания S=la.

Плотность воды .

Опытная проверка. На вертикальной банке цветной линией отмечают глубину погружения, найденную из опыта и последующих расчетов, и ставят банку в сосуд с водой. Опыт показывает, что глубина погружения совпадает с найденным значением.

В связи с решением задачи принцип определения осадки корабля.

В экспериментальных качественных задачах опыт ставят в тот момент, когда в нем возникает необходимость.

Некоторые экспериментальные задачи могут быть поставлены фронтально. Примеры таких задач: "Давление воды на дно стакана, пользуясь линейкой", "Определите мощность тока, потребляемого электролампой". В этом случае они выполняют роль фронтальных опытов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ И ЛАБОРАТОРНЫМ РАБОТАМ

 

 

Знания о физическом научном эксперименте формируются прежде всего в процессе ознакомления обучающихся с историческими опытами. Чтобы оно было эффективным, требуется выполнение ряда условий. Следует знакомить учащихся с такими историческими опытами, которые в развитии физики сыграли значительную роль. Показ исторического опыта не должен изобиловать второстепенными техническими подробностями, но должен отражать его суть, основную авторскую идею. Учитель должен постоянно отмечать, обращать внимание учащихся на те упрощения, которые он сознательно вводит для показа главного в данном явлении, отделяя это главное от многих других сторон, усложняющих реальное протекание процесса. Необходимо также разъяснять, почему в действительности путь к этим «простым и легким» опытам был таким сложным и длительным, полным ошибок и заблуждений. В противном случае у школьника может создаться представление, что в науке все делается просто и «с первого раза». При проведении исторических опытов можно использовать современное оборудование, однако при этом необходимо рассказать школьникам, каким оборудованием в действительности пользовались исследователи (показать исторические рисунки, фотографии, модели и т.д.). Следует раскрывать связь данного эксперимента с научной и социальной обстановкой, сложившейся к этому времени, сформулировать задачи, которые были решены в науке в результате проведения данного эксперимента.

В научно-популярной и методической литературе исторические опыты называют по-разному: решающие, ключевые, великие, основополагающие и

т.д. Особенно часто можно встретить термин «фундаментальный опыт» или «фундаментальный научный эксперимент», при этом приводится не один десяток исторических опытов. Само слово «фундаментальный» предполагает, однако, что число таких опытов не должно быть велико.

Разумеется, не все изучаемые в школе исторические опыты являются действительно фундаментальными, хотя все они в определенной степени способствовали развитию физики в прошлом и настоящем.

Было бы полезно систематизировать многочисленные исторические наблюдения и опыты, входящие в курс физики средней школы (и те, которые, по нашему мнению, должны войти в будущем), по их функциональному признаку – реализации определенной задачи и значению в развитии физической науки.

Класс физических опытов:

1.                  Опыты, благодаря которым было положено начало новым разделам (направлениям) физики (такие опыты следует называть фундаментальными);

2.                  Опыты, позволившие открыть отдельные физические явления;

3.                  Опыты, позволившие установить свойства и закономерности открытых ранее явлений (самый распространённый класс физического эксперимента, осуществляемый ежедневно в научно-исследовательских лабораториях);

4.                  Опыты, с помощью которых была доказана справедливость фундаментальных теорий;

5.                  Опыты – «решающие эксперименты», окончательно отвернувшие или подтвердившие справедливость теоретического положения (гипотезы);

6.                  Опыты, в которых определяется точное значение физических величин и постоянных;

7.                  Опыты и исследования по созданию новых экспериментальных средств и методов, новых материалов, техническому использованию открытых явлений;

Изучение исторических опытов в соответствии с приведенной классификацией помогает избежать возникновения у учащихся ошибочного представления об одинаковом значении всех исторических опытов, дает возможность показать школьникам круг задач, которые решает физический эксперимент в науке, выбрать из большого числа опытов, относящихся к данной группе, наиболее характерные и важные для учебного процесса.

Учебный физический эксперимент, его структура и задача.

Учебный эксперимент – это воспроизведение физического явления на уроке с помощью специальных приборов в условиях наиболее доступных для его проведения. Это отражение научного метода познания.

Цели:

1.       служит источником знания 2. является методом обучения

                3.      это вид наглядности.

Классификация по организационному признаку:

1.                  демонстрационные опыты (эксперименты). (обязательные в программе: опыты Кулона, Столетова (фотоэффект), опыты Герца,

Максвелла, весы Камидеша)

2.                  Фронтальные лабораторные работы, опыты, наблюдения.

3.                  Физический практикум

4.                  Внеклассные опыты и наблюдения

5.                  Количественные и качественные

6.                  Экспериментальные задачи

7.                  Творческие задания.

Методический анализ эмпирического уровня познания начнем с указания на некоторые терминологические трудности. Как известно, наблюдение и эксперимент представляют собой различные методы эмпирического познания. Наблюдение – это целенаправленное восприятие явлений окружающей действительности, в ходе которого получают знания о внешних сторонах, свойствах я отношениях изучаемых объектов. Под экспериментом понимают такую практически-познавательную деятельность человека, когда последний активно вмешивается в протекание изучаемого процесса.

Что касается термина «опыт», то в науке его используют предельно широко – как всю совокупность практических взаимоотношений между человеком и материальным миром, как результат освоения действительности. В истории физики этот термин означает эксперимент или наблюдение, проведенные ученым. В методике преподавания физики термин «опыт» используют чаще других, когда речь идет о самостоятельном эксперименте или наблюдении учащегося. В Процессе лабораторного практикума и фронтальных лабораторных работ или демонстрации учителя, за которой учащийся наблюдает. Будем пользоваться термином «опыт» в качестве общего названия двух методов эмпирического познания: наблюдения и эксперимента при условии, что учащиеся проделывают их самостоятельно. Всю систему эмпирического уровня познания природы по традиции в методике преподавания физики называют физическим экспериментом, так что понятие «экспериментальный» и «эмпирический» являются здесь синонимами.

Необходимость формирования у обучающихся глубоких знаний о сущности экспериментального познания определяется той ролью, которую играет эксперимент в физических исследованиях: во-первых, он является источником новых знаний о фактах, которые затем систематизируются и обобщаются в законах и теориях; во-вторых, только эксперимент служит падежным критерием истинности любой теоретической концепции, гипотезы, положения; в-третьих, через эксперимент осуществляется связь физических знаний с техникой, производством и бытом.

В настоящее время, когда резко возросла роль теории в преподавании физики, важно не впасть в крайность излишней теоретизации курса физики и поэтому эксперименту отводить лишь иллюстративную роль. Такое сужение функций школьного физического эксперимента привело бы к снижению идейного уровня курса, к неправильному пониманию обучающимися механизма развития науки и роли эксперимента в научном познании. Академик Г.С. Ландсберг отмечал: «Отчетливое понимание… экспериментального характера физических законов имеет крайне важное значение: оно делает из физики науку о природе, а не систему умозрительных построений; с другой стороны, оно прививает мысль о границах применимости установленных физических законов, основанных на них теорий и открывает перспективы дальнейшего развития науки».

Формирование экспериментальных знаний и умений осуществляется в процессе обучения физике в двух основных формах: проведение учебного эксперимента и ознакомление с историческими опытами и наблюдениями, сыгравшими большую роль в развитии физической науки. Эти две формы, каждая из которых выполняет свои собственные обучающие функции, взаимно дополняют друг друга и являются в одинаковой степени необходимыми элементами физического образования. Действительно, если бы ознакомление учащихся с методами экспериментального исследования ограничивалось постановкой учебного физического эксперимента в нынешнем его состоянии, то существовала бы определенная опасность того, что у школьников может утвердиться неправильное понимание сущности и роли этих методов в процессе познания. Ведь в методологическом отношении учебный эксперимент резко отличается от научного по задачам, сложности и числу проведенных опытов, их вариативности, оборудованию, технике измерения и расчетов, соотношению запланированности и случайности и т.д. Вот почему, наряду с традиционной системой учебного эксперимента, необходимо широкое внедрение в школьный курс физики разработанной и обоснованной системы методологических знаний о физическом научном эксперименте. В содержание такой системы включаются знания о роли эксперимента в научном познании и практической жизни; о видах физического эксперимента – наблюдении и опыте; о методологическом принципе наблюдаемости; о сущности процедуры измерения; о требованиях к современному эксперименту; о специфике измерений в микромире и др.

Система включает также комплекс экспериментальных умений методологического характера: описать наблюдение или опыт; подметить различие между тем, что ожидалось получить и что в действительности получилось в ходе эксперимента; отличить в нем существенное от второстепенного; сделать предсказание дальнейшего хода эксперимента; самостоятельно выдвинуть гипотезу (сделать вывод), объясняющую полученный результат; использовать графики и таблицы.

Мысленный эксперимент играет важную роль в научном познании. Под мысленным экспериментом иногда понимают такие операции, которые предшествуют реальным опытам, являясь их детальным продумыванием, мысленной «репетицией». В таких случаях мысленные эксперименты в силу своей наглядности и убедительности позволяют ученым проверять еще до проведения опыта (а иногда потребность в последних и отпадает) полученные теоретические Результаты в качественной форме и, следовательно, судить об их справедливости, заранее оценивая шансы на успех реальных опытов, часто весьма дорогостоящих.

В более общем случае под мысленным экспериментом понимают оперирование идеализированными объектами с целью получения новых данных или доказательства справедливости предложенных гипотез. В таком понимании мысленные эксперименты не могут быть проведены в действительности по техническим причинам. Но всегда мысленные эксперименты должны быть логически непротиворечивыми.

Как отмечал А. Эйнштейн, их функция состоит в том, чтобы «оперировать в мысли с вещами, невозможными практически, т.е.такими, которые противоречат нашему повседневному опыту, но не с полнейшей бессмыслицей».

Мысленный эксперимент широко использовали в своем творчестве при выдвижении фундаментальных идей, теорий, законов Галилей, Ньютон, Максвелл, Эйнштейн, Бор, Гейзенберг и другие выдающиеся физики.

В последнее время в преподавании физики все чаще используется этот метод как одно из средств наглядности при изложении сложного материала.

Мысленный эксперимент как метод теоретического познания в школьном курсе физики выполняет следующие познавательные функции: служит средством наглядности при изложении сложного материала, а также своеобразным способом доказательства выдвинутых положений еще до выполнения реального эксперимента (иногда потребность в последнем отпадает).

Мысленные эксперименты условно могут быть разделены на исторические и эксперименты чисто учебного характера, которые предлагают учитель или учащиеся в процессе объяснения какого-либо явления.

Мысленные эксперименты учебного характера применяются, например, при выводе формулы архимедовой силы, действующей на тело кубической формы, полностью погруженное в жидкость; при выводе основного уравнения кинетической теории идеального газа и т.д.

Исторические мысленные эксперименты следует излагать, используя хрестоматийный материал: отрывки из сочинений ученых, исторические рисунки и др.

Знакомясь с мысленными экспериментами, выдвинутыми учеными прошлого и настоящего, учащиеся смогут проследить за ходом мысли ученого, его теоретической аргументацией, овладевая при этом интеллектуальными навыками познания.

Гипотеза является важным рабочим инструментом в научном познании. Анализируя полученные экспериментальным путем те или иные факты, ученый выдвигает предположение – гипотезу, на основе которой объясняет наблюдаемое явление, вскрывает его внутренний механизм, связь с другими явлениями.

Подчеркивая познавательную ценность гипотезы, С.И. Вавилов все методы построения физической теории разбил на три класса: метод принципов, метод модельной гипотезы и метод математической гипотезы.

Первый путь построения физического знания был разработан впервые Ньютоном при создании классической механики. Он заключается к следующем. На основе опыта формулируются аксиомы или так называемые принципы, и из них дедуктивным путем выводятся отдельные законы и положения, которые должны быть проверены на опыте. Согласие этих следствий с опытом служит гарантией справедливости основных положений теории. Методом принципов построены, помимо классической механики, также термодинамика, электродинамика, теория относительности, атомная теория Бора.

Преимущество метода модельной гипотезы заключается в его наглядности и простоте, он неоднократно использовался в истории физики. Этим методом построены, например, молекулярно-кинетическая теория, статистическая физика, классическая электронная теория.

Метод математической гипотезы наиболее абстрактен. С его помощью создана квантовая механика. Фундаментальная идея Луи де Бройля о корпускулярно-волновом дуализме возникла на основе экстраполяции математического соотношения между длиной волны и импульсом для фотона

 

на микрочастицы, Л. де Бройль воспользовался аналогией между математическим аппаратом аналитической механики и волновой теорией. Гипотеза о существовании позитрона также вытекала из решения уравнения в созданной П. Дираком квантовой теории электрона. В средней школе метод математической гипотезы можно проиллюстрировать, используя аналогию между гравитационным и электростатическим полем.

Учащиеся должны понимать разницу между научной гипотезой, выдвигаемой для разрешения той или иной проблемной ситуации, возникшей в процессе познания, и гипотезой, основанной на домыслах, слепой вере в

«божественные силы» или фантастических предположениях, ничего общего не имеющих с реальностью. Поэтому надо обратить их внимание на ряд условий, обеспечивающих состоятельность научной гипотезы. Прежде всего, гипотеза должна пройти через логический анализ, ее необходимо сопоставить с теми известными фактами, справедливость которых неоднократно и надежно обоснована. Вместе с тем гипотеза не должна слепо приспосабливаться к фактам, которые кажутся само собой разумеющимися, соответствующими нашему «здравому смыслу». В истории науки было много случаев, когда такие факты пересматривались и опровергались новой теорией, возникшей на основе «безумной» гипотезы. Как отмечал К.А. Тимирязев, «иногда говорят, что гипотеза должна быть в согласии со всеми известными фактами; правильнее было бы сказать – или быть в состоянии обнаружить несостоятельность того, что неверно признается за факты и находится в противоречии с нею».

Последнее обстоятельство можно проиллюстрировать рядом примеров: гипотеза Коперника о движении Земли вокруг Солнца, составившая основу гелиоцентрической системы; гипотеза Галилея об одинаковости падения тел в безвоздушном пространстве, получившая простую интерпретацию в механике Ньютона; гипотезы Бора о характере поведения электронов в атоме, включенные в виде постулатов в атомную теорию, и т.д.

Научная гипотеза как предположительное знание требует своего экспериментального подтверждения, а поэтому должна быть принципиально проверяема. Пусть гипотеза не проверена сегодня (она, например, неактуальна для данного состояния науки, или технический уровень не позволяет это сделать), тогда она будет проверена в будущем, но до этого времени ученые относятся к ней с недоверием и не делают, как правило, эту гипотезу предметом исследования. В истории физики бывали случаи, когда гипотеза ждала своего подтверждения целые столетия (например, атомистическая гипотеза, впервые введенная в физику древнегреческими материалистами Демокритом и Эпикуром, была надежно доказана экспериментами лишь в начале XX в.; гипотеза Гюйгенса о волновых свойствах света, выдвинутая в XVII в., получила экспериментальное подтверждение в XIX в. и т.д.). Гипотеза, не подтвержденная экспериментально, не включается в научное знание. Усвоению этого положения учащимися должны помочь соответствующие примеры.

На примерах ряда гипотез, таких, как гипотезы теплорода, электрической и магнитной жидкостей, светоносного эфира, школьники должны усвоить, что гипотезы, принципиально не проверяемые, не имеют права на существование в науке, однако они часто стимулируют поиск ученых, наталкивая их на новые эксперименты и, подобно строительным лесам, помогают строить здание физической науки. Учащихся следует познакомить еще с одним свойством научной гипотезы – ее плодотворностью. Выдвинутая вначале для объяснения одногоединственного явления, гипотеза надежно служит в дальнейшем при исследовании целого ряда процессов. Таковы фундаментальные гипотезы об атомах, о квантах. Квантовая гипотеза, например, выдвинутая М. Планком в 1900 г. только для объяснения излучения абсолютно черного тела (сам ученый вначале был категорически против ее экстраполяции на другие явления), была вскоре развита и обобщена А. Эйнштейном в гипотезу о фотонах (1905 г.), и на этой основе получили объяснение фотоэффект и люминесценция; была построена теория удельных теплоемкостей многоатомных газов и твердых тел (1911 г.). Эта же гипотеза была использована Н. Бором для создания теории атома водорода (1913 г.) и т.д.

В настоящее время квантовая гипотеза, блестяще подтвержденная экспериментально, стала прочным фундаментом всей современной физики.

Необходимо также показать учащимся, как происходит уточнение и углубление гипотезы, выдвинутой вначале в форме догадки, превращение ее в теорию посредством эксперимента и логического аппарата. При этом нельзя забывать, что в учебном процессе гипотеза получает свое обоснование и доказательство сразу же после ее выдвижения, поэтому всегда следует отмечать долгий путь развития научной гипотезы от гениальной догадки ученого до сложившейся теории.

Между теорией и гипотезой, положенной в основу данной теории, нет качественного различия. Гипотеза служит отправной точкой, первой ступенью в построении физической теории. Экспериментальное подтверждение следствий теории является одновременно подтверждением тех основных посылок теории, которые были выдвинуты вначале как гипотезы. Это можно проиллюстрировать при изучении теории всемирного тяготения, теории электромагнитного поля, элементов теории относительности.

В учебном процессе логический процесс формирования гипотезы состоит в ее выводе из ранее изученных законов, теорий, идей. При этом происходит дедуктивная экстраполяция этих знаний на объяснение новых фактов и результатов экспериментальной деятельности учащихся.

При этом нельзя забывать, что в учебном процессе гипотеза получает свое обоснование и доказательство сразу же после ее выдвижения, поэтому всегда следует отмечать долгий путь развития научной гипотезы от гениальной догадки ученого до сложившейся теории.

Между теорией и гипотезой, положенной в основу данной теории, нет качественного различия. Гипотеза служит отправной точкой, первой ступенью в построении физической теории. Экспериментальное подтверждение следствий теории является одновременно подтверждением тех основных посылок теории, которые были выдвинуты вначале как гипотезы. Это можно проиллюстрировать при изучении теории всемирного тяготения, теории электромагнитного поля, элементов теории относительности.

В учебном процессе логический процесс формирования гипотезы состоит в ее выводе из ранее изученных законов, теорий, идей. При этом происходит дедуктивная экстраполяция этих знаний на объяснение новых фактов и результатов экспериментальной деятельности учащихся.

Физическая теория и методы теоретического познания.

Подчеркивая экспериментальный характер физической науки, учитель не должен забывать и о втором уровне научного познания – теоретическом. Экспериментальные факты, не объединенные в теорию, способную объяснить эти факты и предсказать новые, не имеют большой познавательной ценности. Известный физик Л.И. Мандельштам отмечал: «В достижении нашей конечной цели – познания природы – могучим подспорьем, систематизирующим наш опыт и дающим возможность пользоваться материалом, является теория. Теория, а значит, и орудие, которым она пользуется, – математика, не является балластом и чем-то искусственно пристегнутым к науке о природе. Нет, она есть то орудие, без которого мы не были бы в состоянии осилить окружающий нас мир как в практическом смысле, так и в смысле удовлетворения умственных потребностей. Поэтому я нахожу – не считайте это парадоксом, что нельзя требовать знания только опытной физики, но вовсе не потому, что это слишком мало, а потому, что это слишком трудно. Более или менее полное знание опытной физики без помощи теории человеку не под силу…».

С терминами «теория», «теоретическое» школьники знакомятся задолго до изучения конкретных физических теорий в старших классах средней школы. С названными понятиями они ассоциируют житейские и даже чисто ученические представления: «теория – это то, что написано в учебнике и надо выучить», противопоставляя последней решение задач или проведение лабораторных (практических) занятий.

Философия, анализируя соотношение теории и практики, теоретической и практической деятельности человека и т.д., придает понятию «теория» широкий смысл познавательной деятельности вообще. В методологии науки это понятие имеет более узкий смысл: оно означает не всю познавательную деятельность человека, а лишь тот ее высший уровень, на котором выявляются наиболее существенные свойства и закономерности изучаемых явлений.

Во всех естественных науках имеются свои теории. Среди всех естественнонаучных теорий физическая теория отличается высоким уровнем систематизации знаний, логическим совершенством, глубоким проникновением в нее математики, непосредственной связью с экспериментом – все это позволяет считать физическую теорию образцом теоретического знания, недосягаемым пока для других наук. Вот почему так важно формировать у учащихся методологические знания о сущности и структуре научной теории, методах теоретического познания природы.

Теоретическое познание обучающегося включает как уровень овладения отдельными методами, так и уровень усвоения целостной физической теории. Первый уровень теоретического познания должен широко использоваться на всем протяжении обучения физике.

Определение теории в точной и полной формулировке давать школьникам вряд ли целесообразно (да это и невозможно), однако в соответствующих темах школьного курса физики необходимо познакомить учащихся с важнейшими характеристиками научной теории. К таким характеристикам относятся следующие:

1.                  Теория должна быть достоверна и соответствовать результатам эксперимента (другими словами, выдерживать экспериментальную проверку).

В процессе ознакомления в старших классах с физическими теориями (их основами или элементами) необходимо обращать внимание учащихся на те факты, полученные экспериментально, которые подтвердили справедливость изучаемых теорий.

Те же теории и теоретические положения, которые казались логичными и математически безупречными, и конце концов отвергались как неверные, если не подтверждались па опыте. Так, при изучении тепловых явлений учащихся знакомят с теорией теплорода как теорией, не выдержавшей экспериментальной проверки и поэтому ошибочной.

2.                  Теория должна объяснять факты, а не только их описывать. Как отмечал Э. Резерфорд, «ценность любой рабочей теории основана на той совокупности экспериментальных фактов, которые она может объяснить, и на ее способности предложить новые направления исследований». В процессе объяснения исследуемые явления включаются в рамки созданной теории, получая свое обоснование на базе основных положений теории. При этом вскрываются внутренние связи между явлениями, их фундаментальные свойства, устанавливается их причинная обусловленность. В результате объяснения обеспечивается понимание сущности исследуемого круга явлений. Объяснительная функция научной теории во многих чертах сходна с объяснением в учебном процессе, где оно выступает как один из эффективных способов усвоения учебного материала.

Объяснительная функция теории раскрывается, например, в процессе изучения многих тепловых и молекулярных явлений. Понятие температуры, газовые законы, агрегатные состояния и агрегатные превращения, поверхностное натяжение и свойства твердых тел объясняются на основе молекулярно-кинетической теории, что постоянно подчеркивается при изложении материала на страницах учебника. Учащиеся глубже понимают и лучше усваивают такие вопросы, как сила тока и электродвижущая сила, закон Ома, зависимость удельного сопротивления от температуры, закон Джоуля – Ленца, когда для их объяснения используется электронная теория.

Квантовая теория света помогает объяснить фотоэффект и люминесценцию, теория Бора – линейчатые спектры излучения и поглощения и т.д.

3.                  Теория должна быть эвристичной и предсказательной (т.е. давать новые знания, первоначально в нее не заложенные).

Научное предсказание наряду с объяснением – важнейшая функция теории, позволяющая предвосхищать дальнейшее развитие и усовершенствование этой теории, открывать «на копчике пера» новые явления и закономерности, с которыми наука не сталкивалась до сих пор.

Курс физики содержит большой материал, позволяющий показать эвристические свойства физической теории. Так, при изучении электромагнитного поля знакомим учащихся с предсказанием Максвелла об электромагнитной природе света. Рассказываем, что из уравнений Максвелла следовал вывод о распространении электромагнитного поля со скоростью, совпадающей со значением скорости света. Это позволило ученому выдвинуть гипотезу, согласно которой свет есть электромагнитные волны. Предсказание Максвелла получило в дальнейшем экспериментальное подтверждение в опытах Герца и Лебедева.

4.                  Теория должна быть достаточно концентрированной и общей (т.е. такой, чтобы, исходя из небольшого числа основных положений, можно было получать различные следствия и охватывать достаточно большое число реальных явлений).

Если бы физическая теория объясняла только один факт, одно явление, то вряд ли она имела бы какую-нибудь ценность. Любая физическая теория, даже созданная для объяснения небольшого круга природных явлений, должна описывать все явления данного круга. Так, теория всемирного тяготения, созданная Ньютоном на основе анализа одного явления – движения Луны вокруг Земли, сумела объяснить многие явления макро- и мега-мира, где гравитационное взаимодействие играет существенную роль. При изучении механики и астрономии учащиеся узнают, что сам Ньютон и другие исследователи прошлого и настоящего использовали теорию всемирного тяготения для решения большого числа важных научных проблем, среди которых были: определение массы Солнца, Земли, Луны и других планет; доказательство независимости ускорения свободного падения от массы тел и вычисление значения g на экваторе; установление несферичности формы Земли, объяснение прецессии точек равнодействий; объяснение приливов и отливов; раскрытие природы комет и описание их движений; расчет полетов искусственных спутников Земли; расчет возмущений движений планет и т.д.

5.                  Теория должна быть внутренне непротиворечивой и допускать усовершенствование.

В процессе ознакомления учащихся с различными физическими теориями необходимо показывать, что теория создается не сразу и не окончательно, ее основные идеи постепенно уточняются, углубляются, расширяются, пока она не принимает свою окончательную и совершенную форму. Так, молекулярно-кинетическая теория прошла многовековую историю от атомистической гипотезы древнегреческих философовматериалистов Демокрита и Эпикура до конца XIX в., когда эта теория получила статистическую интерпретацию в трудах Больцмана, Максвелла и Гиббса; а теория электромагнитного поля Максвелла не сразу приняла современный вид «изящных» уравнений: на протяжении десятилетий Максвелл и другие ученые шаг за шагом уточняли, дополняли и в конце концов упразднили модели, которые Максвелл ввел для наглядной интерпретации абстрактных понятий, связанных с электромагнитным полем.

В процессе изучения физических теорий или их элементов учащиеся должны увидеть их системный характер, структуру:

1)                 основные    понятия,     отражающие        эмпирический      базис,          и

совокупность фактов, на которых зиждется теория – основание теории;

2)                 основные принципы и законы, составляющие ядро теории;

3)                 следствия, выведенные из принципов и законов путем логической дедукции.

Эти структурные компоненты устоявшейся теории должны включаться в логически замкнутую цепочку – схему научного познания, представляющего собой единство экспериментального я теоретического уровней познания природы.

Формирование методологических знаний об экспериментальном и теоретическом уровнях научного познания необходимо осуществлять в процессе обучения таким образом, чтобы в сознании обучающегося эти уровни всегда представлялись как два неразрывно связанных и взаимодополняющих аспекта единого научного подхода к познанию действительности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ НАГЛЯДНЫХ ДЕМОНСТРАЦИОННЫХ МАТЕРИАЛОВ

 

1. Метод моделирования в преподавании физики основной школы

 

Моделирование, как способ научного познания реальности, давно стало одним из наиболее мощных средств науки. Само слово "модель" было известно очень давно, первоначальное значение слова было связано с архитектурой. В эпоху средневековья оно обозначало масштаб, в котором выражались все пропорции здания. Впоследствии понятием модели стали пользоваться в научных исследованиях, когда непосредственное изучение каких-либо явлений оказывалось невозможным или малоэффективным. Начало моделированию, как методу теоретического исследования, положил И. Ньютон, сформулировав две теоремы о подобии, позволяющие результаты опытов по сопротивлению тел, движущихся в жидкой среде, переносить на другие случаи, в книге "Математические начала натуральной философии".

Метод моделирования имеет большое значение в современных условиях. Он основан на построении соответствующей модели объекта, изучении ее свойств и переносе полученной информации на сам объект. Роль модели состоит в том, что она – заменитель объекта, посредник в отношениях между субъектом и объектом. Под моделью понимается условный образ или образец изучаемого объекта.

В естествознании под физическим моделированием понимается замена изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу.

Так как в Государственном образовательном стандарте предусмотрено изучение методов научного познания в виде отдельного раздела, то необходимо формировать у школьников представление о роли моделирования явлений и объектов, области применения и границ применимости моделей. Бесспорно, это требует перестройки всего учебного процесса в школе так, чтобы учащиеся получили четкое представление о происхождении научных знаний и понимали, как связаны между собой факты, понятия, законы и теоретические выводы.

В курсе физики понятие модели может быть рассмотрено в двух аспектах: модель как объект познания и как средство познания. Проиллюстрируем это. Для рассмотрения понятия модели как объекта познания подходит следующая классификация моделей, в которой все модели делятся на два больших класса: модели материальные и модели идеальные (информационные). А информационные модели в свою очередь делятся на: описательно-информационные, математические

(формализованные) и графические.

Рассмотрим возможные примеры моделей взаимодействия двух электрически заряженных тел.

Примером материальной модели такого взаимодействия могут быть крутильные весы Кулона, в которых шарики А и В заряжаются определенным образом и играют роль заряженных тел. А о величине силы взаимодействия между заряженными телами судят по повороту тонкой серебряной упругой нити подвеса.

Описательно-информационная модель: два разноименно заряженных тела притягиваются, а два одноименно заряженных тела отталкиваются, причем сила взаимодействия зависит от расстояния между телами, среды, в которую они помещены и величины заряда тел.

Примером математической модели является связь между величинами в законе Кулона (записанном, например, в скалярной форме в системе СИ): F= k(q1q2/r²)

Графической моделью (рис.1) служит, например, зависимость модуля силы взаимодействия от расстояния между двумя телами (при постоянной величине зарядов тел).

 

 

Рис.1

 

При рассмотрении модели, как средства познания чаще используется деление моделей на материальные (предметные) и теоретические. За редким исключением, любой физический эксперимент – это модель (материальная). А примером теоретической модели может служить модель гармонической электромагнитной волны из курса физики основной школы.

 

 

Рис.2

 

Гармоническая электромагнитная волна (рис.2) – это распространяющееся в пространстве с конечной скоростью гармоническое электромагнитное колебание. Гармоническая электромагнитная волна представляет собой бесконечную синусоидальную волну, в которой все изменения напряженности электрического поля и индукции магнитного поля происходят по закону синуса или косинуса. Причем, колебания вектора напряженности E вектора индукции B в электромагнитной волне происходят перпендикулярно направлению ее распространения. В то же время векторы напряженности и индукции перпендикулярны друг другу. Это означает, что волна движется в направлении, перпендикулярном плоскости, в которой колеблются векторы E и B.

К сожалению, многие учителя в настоящее время не готовы к изменению акцентов в преподавании. В. Г. Разумовский отмечает, что не только ученики, но часто учителя забывают о "модельном" характере теоретических знаний, придают им статус полной адекватности изучаемой реальности, что чрезвычайно сковывает развитие познавательных и творческих способностей учащихся. Изменить ситуацию может лишь такая организация учебного процесса в педагогическом вузе, когда раскрытию модельного характера познания в физической науке будет уделяться достаточно времени.

 

2.       Взаимодействие   теоретического    и        эмпирического     методов исследования

 

"Физика – наука экспериментальная…". "Физики – наука теоретическая…". Сколько раз в истории при подобном противостоянии истинна оказывалась где-то посередине. Именно это и происходит сейчас в методике преподавания физики. От этих двух полярных взглядов переходят в доктрине тесного взаимодействия теоретических и эмпирических методов познания.

Что подобное решение может дать для самой методики преподавания физики? Прежде всего то, что раз мы признаем одинаково высокую степень важности и теоретических и эмпирических методов познания, а так же большое внимание уделяем проблемам их взаимодействия, значит мы уделяем особое внимание тем методам научного познания, которые принадлежат к классу как теоретических, так и эмпирических. Это происходит из-за того, что при изучении узко специальных методов познания мы даем школьникам лишь знания о самом методе познания, и знания полученных с помощью этого метода. Совсем по-другому обстоят дела, когда мы преподносим общие методы познания, а особенно на столько общие, что относятся одновременно и к теоретическим и к эмпирическим.

Мы даем ученикам системаобразующий фактор, ту нить познания, на которую нанизываются ее конкретные бусинки-знания. То есть, изучив подобные методы познания, у школьника будет четкое представление о том, как было получено, и как может быть получено большинство научных фактов, а это само по себе не мало. А, освоив подобные методы в достаточной мере, школьник сможет получить сам или под руководством учителя немалую часть научных фактов.

Какие методы научного познания можно отнести к столь привилегированной группе? Это, прежде всего, общефилософские методы познания, такие как анализ, синтез, моделирование и т. д. Остановимся более подробно на методе моделирования. Итак, для качественного усвоения знаний по физике школьникам необходимо в полной мере раскрыть суть метода моделирования, но если это общефилософские методы познания, не раскрываются ли они в достаточной степени на других школьных предметах? Все школьные предметы химия, природоведение, биология, русский язык и даже физкультура работают с моделями или со знаниями, полученными с помощью метода моделирования, но даже термин "модель" встречается более-менее часто только в биологии, да и там он употребляется не в научнопознавательном смысле, а в смысле демонстрационного увеличенного макета. Предмета "методы научного познания" в основной школьной программе, пока, не существует. Остается информатика. Авторских программ по информатике существует большое количество, и в некоторых из них проблеме моделирования уделяется действительно достойное внимание, и метод моделирования рассматривается в довольно большом объеме. Основным недостатком подобных программ является, пожалуй, то, что метод моделирования изучается в старших классах, обычно в десятом или даже одиннадцатом.

Подводя итоги, можно сделать следующий вывод: в курсе физики необходимо в достаточной мере изучать метод моделирования. При чем, желательно изучать методы моделирования начиная с первых занятий по физике и не выпускать далеко из рассмотрения на протяжении всей основной школы.

 

3. Классификации моделей и их значение в обучении физике

 

Модели давно играют одну из главных ролей в обучении физике, о моделях написано много научных работ, много ученых, преподавателей и учителей создавали и создают новые учебные модели, разработано много классификаций моделей. Рассмотрим некоторые классификации моделей, а так же попытаемся оценить их ценность для методики преподавания физики.

Существует множество классификаций моделей, отличающихся друг от друга признаками, положенными в основу классификации, перечислим некоторые из них.

Модели делятся:

                     по способу познания: житейские, художественные, научнотехнические;

                     по отрасли знаний: биологические, экономические, исторические и т.д.;

                     по области использования: учебные (наглядные пособия), опытные (модель самолета в турбодинамической трубе), научно-технические (ускорители элементарных частиц), игровые (экономические, военные), имитационные (многократное повторение опытов для оценки результатов воздействия реальной действительности на образец);

                     по учету фактора времени: динамические и статистические.

По способу реализации и средствам моделирования существует довольно много классификаций, рассмотрим классификацию представленную в книге Каменецкого и Солодухина "Модели и аналогии в курсе физики средней школы". Модели делятся на: материальные (предметные) и идеальные (мысленные). В свою очередь материальные модели делятся на: физически подобные, пространственно-подобные и математически подобные, а идеальные модели делятся на: моделипредставления и знаковые модели. К сожалению, в методике преподавания физики, можно встретить и другую классификацию моделей по способу реализации: физические и математические, которая является не полной даже в рамках преподавания физики. Так из этой классификации выпадают, например, химические уравнения и уравнения ядерных реакций.

Приведенные классификации представляют интерес для методики преподавания физики только в плане обучения учеников методу моделирования, и не представляют особого интереса при преподавании конкретных тем курса. Совсем иначе обстоит дело с классификацией, основанной на способах получения моделей. Модели можно разделить на модели, полученные путем предельного перехода, модели, полученные путем приписывания и теоретические конструкты.

С помощью предельного перехода можно получить модели непосредственно воспринимаемых явлений и объектов, путем рассмотрения целого ряда явлений или объектов обладающих интересующим свойством, например в порядке его возрастания, а затем сконструировать мысленный объект или явление, обладающим этим свойством в бесконечной мере, либо лишенным его. Таким образом, можно вводить понятия материальной точки или математического маятника.

Путем приписывания некоторых свойств объекту можно получить модели микрообъектов или микроявлений, не воспринимаемых непосредственно органами чувств. Таким образом, можно получить модели идеального или электронного газа. И, наконец, теоретические конструкты, такие как электрон или электромагнитное поле, они не могут быть получены путем приписывания, и лишь дальнейшее развитие науки может подтвердить правомерность их использования.

Из данной классификации можно получить конкретные методические рекомендации по введению моделей того или иного класса.

Для успешного введения модели непосредственно воспринимаемого макрообъекта или макроявления, необходимо реализовать наблюдение подобных объектов/явлений с различными степенями выраженности интересующих свойств. Для построения моделей микрообъектов и микроявлений полученных путем приписывания необходимо, в начале, на основе предыдущего опыта, путем абстрагирования отбросить несущественные стороны, а оставшиеся в поле рассмотрения свойства приписать модели. И, наконец, при введении теоретических конструктов, таких как электрон, квант или электромагнитное поле, существование которых, само по себе, необходимо доказывать, остается использовать исторический материал, показывающий, как эти понятия появились в истории науки.

 

4. Демонстрационная компьютерная модель "Электрический ток в металле"

 

В курсе "основы электродинамики" основной школы есть много важных для дальнейшего обучения и сложных для понимания учащихся тем, это и ЭДС индукции, и напряженность электрического поля, и электромагнитные колебания. Одной из таких тем является электрический ток в металлах, остановимся подробнее на этой теме.

Сложность темы заключается в том, что для ее качественного раскрытия необходимо использовать статистические понятия, с которыми школьники встречались только при изучении основ молекулярной физики и, следовательно, владеют им не в полной мере. В таком случае статические закономерности необходимо представлять через показ динамики процесса.

Каким образом можно на максимально высоком уровне объяснить данную тему? Используя только плакаты, иллюстрации из учебника и рисунки на доске тему можно качественно раскрыть только для учеников способных оперировать понятиями высокой степени абстракции. Для объяснения природы электрического тока в металлах можно использовать кинофильмы по этой теме, но в большинстве школ кинооборудование уже вышло из строя, да и сами киноленты частично испорчены. Остается рассмотреть два средства обучения, относящихся к новым информационным технологиям – это видеофильмы и компьютерные модели.

В последнее время сильно развивалось производство учебных видеофильмов. Они обладают большой степенью наглядности, и заняли достойную нишу в сфере обучения физике. По рассматриваемой теме существует несколько видеопособий и у учителя есть возможность выбрать наиболее удачное на его взгляд.

Рассмотрим компьютерные модели. Компьютерные технологии в обучении бурно развиваются в последние два десятилетия и на сегодняшний день написано довольно много учебных компьютерных программ. Сейчас учебные компьютерные программы пишут: сами учащиеся, под руководством учителя, учителя физики и информатики, а так же большие профессиональные авторские коллективы. Очевидно, что последние более распространены, более известны и обладают более высокой маркетинговой поддержкой.

Обратимся к учебным компьютерным программам, по рассматриваемой нами теме, наиболее известных и популярных разработчиков.

Начнем рассмотрение с продукта фирмы 1С – "1С: Репетитор. Физика 1,5", представленного на компьютере в виде развернутой книги, на "правой странице" которой располагается учебный текст, а на "левой странице" соответствующие тексту картинки, компьютерные модели и видеоролики. Тему электрический ток в металлах иллюстрирует рисунок 3 на котором отсутствует изображение ионов кристаллической решетки и не отражено хаотическое движение электронов проводимости.

 

 

Рис.3

 

Продукт фирмы "Физикон" "Открытая физика 2.5" реализован в виде, более привычного для данного класса программ, страницы гипертекста, в которую вставлены рисунки и компьютерные учебные модели. Тему электрический ток в металлах иллюстрирует рисунки 4 и 5. "На рисунке 5: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем, масштабы дрейфа сильно преувеличены".

 

 

Рис.4

 

"Базовый курс физики для школьников и абитуриентов" представленный компанией "Медиа Хауз" представляет собой электронный учебник с рисунками, а так же набор компьютерных моделей. К теме электрический ток в металлах можно отнести рисунок 6.

Из выше приведенного анализа можно сделать вывод о том, что в наиболее популярных учебных программных продуктах по физике к теме

"Электрический ток в металлах" приведены только иллюстрирующие рисунки разной степени наглядности и отсутствуют видеоролики и компьютерные модели для данной темы.

 

 

Рис.5

 

Рассмотрим, каким требованиям должна удовлетворять качественная компьютерная модель, отражающая тему "электрический ток в металле". Модель должна показывать хаотическое движение свободных электронов в отсутствии внешнего электрического поля, отражать наличие дрейфовой скорости под действием внешнего электрического поля, и изменение скорости дрейфа при изменении внешнего поля.

На основании выше приведенных требований была разработана демонстрационная компьютерная модель, которая дает возможность продемонстрировать движение электронов проводимости во внешнем электрическом поле.

При запуске программы на экране компьютера появляется окно в котором изображены ионы кристаллической решетки и электроны проводимости, которые хаотически двигаются и обладают дрейфовой скоростью, зависящей от наличия и величины внешнего электрического поля. Программа позволяет увеличивать, уменьшать и обнулять величину электрического поля, а так же изменять его направление. В процессе хаотического движения электроны не испытывают взаимодействия с другими электронами, а изменяют направление лишь при "соударении" с ионами кристаллической решетки. Модель изображает среднюю мгновенную скорость движения электронов и скорость дрейфа электронов. К ограничениям модели можно отнести то, что взято заведомо малое количество электронов проводимости: на 45 ионов кристаллической решетки изображено всего 15 свободных электронов, искаженно изображены размеры частиц и расстояния между ними, не отражено тепловое движение ионов, и т.д. Эти ограничения были намеренно заложены в модель, для ее упрощения и большей наглядности.

 

5. Использование компьютерных моделей при обучении физике

 

Сегодня преподаватели и учителя физики, сталкиваются со следующим рядом затруднений: постоянное сокращение часов на естественнонаучные дисциплины, снижение финансирования учебного процесса, износ и выход из строя имеющегося оборудования. В сочетании с повышенными требованиями к уровню знаний выпускников учебных заведений, и повышенной загруженностью обучающихся эти затруднения могут перерасти в неразрешимые проблемы, особенно в учебных заведениях небольших городов.

Решением подобных проблем может стать использование современных интенсивных форм, методов и средств обучения. Так использование метода проблемного обучения, метода модельных гипотез, а также использование в процессе обучения теле- и видеоаппаратуры позволит повысить качество знаний и снизить психологическую нагрузку на учащихся. Также в решении подобных проблем может помочь использование в процессе обучения компьютерных технологий.

Обучающие программы, которые могут быть использованы при преподавании физики, можно разделить на: моделирующие, вычислительные, проверочные и справочные. Моделирующие программы – это программы представляющие пользователю компьютерную модель физического явления или объекта. Они могут быть использованы, когда демонстрация самого явления или объекта невозможна в связи с его дороговизной, малой наглядностью или опасностью для жизни. Вычислительные программы разработаны для обработки и интерпретации результатов экспериментов. Подобные программы могут производить за учащихся сложные расчеты, строить графики и диаграммы, они особенно эффективны в сочетании с измерительными модулями, такими как L -микро. Проверочные программы обеспечивают проверку знаний путем тестирования или путем пошагового решения задач. Они отличаются объективностью и беспристрастностью. Справочные программы – это базы и банки данных, предоставляющие учащимся доступ к справочной учебной информации.

Рассмотрим компьютерные модели, как самые распространенные компьютерные обучающие программы. Появление персональных компьютеров четверть века назад позволило начать новую эру использования компьютера в обучении, с тех пор создано множество компьютерных моделей. Эти модели создавали профессиональные коллективы программистов, учителя и преподаватели, а также ученики и студенты. Подобные программы охватывают довольно большой ряд явлений и объектов, отличаются друг от друга полнотой, качеством, охватом, системностью и наглядностью.

Для построения модели волны можно воспользоваться принципом Гюйгенса. Каждая точка фронта волны является источником вторичных волн, распространяющихся во все стороны со скоростью распространения волны в среде.

Зная положение фронта волны в какой-либо момент времени можно найти положение фронта волны через промежуток времени Δt . Вторичные волны распространяются от каждой точки волнового фронта и представляют собой сферические поверхности радиуса v * Δt ( v – скорость распространения волны в среде), тогда касательная поверхность ко всем вторичным волнам будет новым фронтом волны в данный момент времени.

С помощью этой модели можно описать преломление и отражение света на границе двух сред. Программа, моделирующая эти явления, будет строить начальный фронт волны, на его поверхности выбирать пять точек, каждая из которых будет источником вторичных сферических волн, и строить касательную к этим волнам, которая и будет новым фронтом волны. Преломление света рассматривается при переходе света из среды с показателем преломления n =1 в среду с показателем преломления n =1,5 (например, преломление света на границе: воздух - стекло).

Программа также показывает границы применения модели световой волны, основанной на принципе Гюйгенса. Параллельные лучи света, от бесконечно удаленного источника падают на отверстие AB . Белым изображены полусферы, которые действительно могли иметь место, а красным изображены вторичные волны, которые предсказываются моделью (принципом Гюйгенса), но на практике не имеют места. Таким образом, программа наглядно демонстрирует, что принцип Гюйгенса позволяет найти волновую поверхность в произвольный момент времени, если известна волновая поверхность в предыдущий момент времени. Но он не позволяет определить границы распространения света, не объясняет прямолинейность распространения света.

Это имитационная программа, созданная специально для демонстрации, с предельно упрощенным интерфейсом и отсутствием возможности изменять какие-либо параметры. Ее можно использовать при объяснении таких тем, как: принцип Гюйгенса, закон отражения и преломления света.

 

6. Другие виды аналогий в курсе физики. Использование аналогии при изучении транзистора

 

В настоящее время транзистор как полупроводниковый прибор нашел широкое применение во всех сферах человеческой деятельности. Популярность прибора повышает интерес учащихся к нему и его техническому приложению. Модель транзистора, как и всякая аналогия, является приближением прибора и имеет свои границы применимости (например, с ее помощью невозможно показать собственную и примесную проводимость; перемещение дырок и электронов и т. д.). Однако в главном модель и оригинал схожи: это тождественность включения их схем и аналогичность работы основных частей и, кроме того, равенство нулю тока коллектора при отсутствии тока в базе.

 

 

Рис.6

 

После ознакомления учащихся с основными элементами транзистора pn-p-типа (эмиттером, базой и коллектором) и механизмами правого и левого p-n-переходов, учащимся предлагается пронаблюдать данные процессы на модели. Для этого собирается установка, показанная на рис. 6. (предложенная В.С. Данюшенковым и С.Е. Каменецким) Она состоит из аналога транзистора 1, двух центробежных водяных насосов с электродвигателями 2 и стеклянных переходников 3, соединенных между собой резиновыми трубками.

В качестве аналога берут модель водоструйного насоса, имеющаяся в арсенале кабинета физики.

Источником переменного "напряжения" для модели (см. рис.8) служит вход 4, который подключают к водопроводному крану. Меняя с помощью крана скорость течения жидкости в установке, регулируют давление (напор) в ней. В этой установке давление жидкости служит аналогом напряжения в электрической цепи транзистора. Насосы выполняют роль источников постоянного тока, трубки с водой — соединительных проводов, а стеклянная трубка 5 - постоянного резистора R, включенного в цепь, показанную на рис.7.

 

 

Рис. 7

 

Работу основных элементов модели необходимо показать учащимся.

Сначала объясняют роль токов в правом и левом p-n-переходах и их влияние на работу транзистора. Для этого открывают кран и создают постоянный напор воды в системе "эмиттер — база". Жидкость через "эмиттерный" вход поступает в полость аналога транзистора и сливается в отверстие "базы". Источник постоянного напряжения (насос) левого перехода включают в таком направлении, чтобы поток воды из "базового" отверстия всасывался в "эмиттерную" цепь и создавал прямой ток, который зависит только от источника напряжения. Показывают соответствующую демонстрацию, изменяя напор воды в системе с помощью крана и насоса (меняют число оборотов двигателя). При этом часть воды поступает в "коллектор". Это иллюстрирует диффундирование нерекомбинированных в базе дырок в коллектор.

Затем показывают значение базы в транзисторе. Включают правый и левый насосы аналога так, чтобы потоки жидкости в них циркулировали по часовой стрелке. Тогда по "базе" будут протекать два встречных потока жидкости. На языке аналогии это означает, что значения силы тока в цепях базы Iб, эмиттера Iэ и коллектора Iк связаны соотношением: Iб=Iэ-Iк. О соотношении значений силы тока в транзисторе учащиеся судят путем наблюдения за показаниями расходомеров жидкости, включенных в "эмиттерную" и "коллекторную" цепи модели. Расходомер представляет собой устройство для измерения скорости течения воды и аналогичен амперметру. Поскольку скорость движения жидкости в "эмиттере" приближенно равна скорости движения жидкости в "коллекторе", можно сделать вывод об отсутствии ее движения в "базе", т. е. о том, что Iб=0. Действительно, так как концентрация инжектируемых дырок с эмиттера много больше их концентрации на границе с базой (ширина базы очень мала), то дырки интенсивно диффундируют к коллектору. В то же время обратный ток коллекторного перехода много меньше тока, создаваемого дырками эмиттера. Поэтому силу тока в цепи коллектора можно считать равной силе тока в цепи эмиттера (Iк Iэ). Это равенство лежит в основе усиливающего действия транзистора.

Затем рассматривается использование транзистора как усилителя мощности. При этом рассматривают два случая: включение транзистора по схеме с общей базой (рис. 3, а) и общим эмиттером (рис. 3, б). Схему с общим коллектором не рассматривают, поскольку она мало чем отличается по действию от схемы с общим эмиттером. Поясняют распределение силы тока между эмиттером, базой и коллектором.

Усиление мощности можно осуществлять двумя способами: а) при постоянном напряжении увеличивать силу тока,

б) при постоянной силе тока увеличивать напряжение.

Сначала рассматривают усиление мощности транзистора по току в схеме с общей базой (рис.3,а). Механизм этого процесса обсуждался при изучении правого p-n-перехода и поэтому усилительное действие в данном случае основано на равенстве Iк=Iэ. Затем переходят к изучению усиления по току в схеме с общим эмиттером, рис3,б (Iк=Iэ+Iб). Сущность процесса состоит в усилении рекомбинации дырок в базе путем подачи напряжения на эмиттерный и базовый входы транзистора. Демонстрацию осуществляют следующим образом. Насос "эмиттерного перехода" переключают так, чтобы он перемещал жидкость против часовой стрелки. Тогда одна часть жидкости от крана поступит по каналу "эмиттера" в полость "транзистора", а другая часть начнет всасываться насосом и перемещаться к "базе". Далее включают насос "коллекторного перехода" (перемещают воду по часовой стрелке) так, чтобы токи в "базе" были направлены в сторону аналога транзистора. Таким образом, возникнет значительный поток воды на выходе из "базы", который будет воздействовать на струю жидкости, вытекающую из "эмиттера", направляя ее в "коллекторный переход".

Усиление мощности по напряжению основано на различии сопротивлений коллекторного и эмиттерного p-n-переходов, включенных в противоположных направлениях. Эмиттерный переход, на который подано прямое напряжение смещения, имеет малое сопротивление, и падение напряжения на нем Us мало. На коллекторный же переход подается обратное напряжение смещения, и сопротивление его значительно больше, поэтому в коллекторную цепь может быть включена высокоомная нагрузка, сопротивление которой Rн значительно больше сопротивления эмиттерного перехода. Поскольку Iк и Iэ одинаковы, то падение напряжения на высокоомной коллекторной нагрузке Uн=IкRIэRн окажется много больше падения напряжения на эмиттерном переходе.

Для демонстрации явления можно воспользоваться моделью, собранной так, чтобы насосы вращались в одну сторону. Поочередно беря трубки 5 разного диаметра, демонстрируют роль нагрузки в цепи коллектора для усиления мощности.

 

 

 

 

 

 

Приложения

 

Таблица: «Соединение проводников»

Соединение

Схема

Постоянная

величина

Следствия

 

Примеры

 

Последова- тельное

 

 

J=J1=J2

U=U1+U2

 

 

R=R1+R2

 

Гирлянды

Парал- лельное

 

    

 

 

 

 

U=U1=U2

J=J1+J2

 

 

 

 

1/R=1/R1+

+1/R2

 

Жилой дом

 

                Таблица     «Агрегатные     состояния     вещества     (твердое,     жидкое,

газообразное)»

 

Схема «Световые явления»

 

 

Схема: «Обобщение знаний о молекуле»

 

Таблица «Первоначальные сведения о строении вещества»

Агрегатное состояние вещества

 

 

Характеристика

Газообразное

Жидкое

Твердое

Объем

Легко изменить

Трудно изменить объем

Сохраняется

Форма

Не имеет формы, заполняет целиком весь предоставленный объем.

Меняет форму, принимая формы сосуда

Не измена без физического вмешательства

Расстояние между молекулами

Много больше самих размеров молекул

Меньше размеров молекул

Расположены в определенном порядке, молекулы колеблются

 

Схема «Виды энергии»

 

 

Энергия

 

 

                                      

 

Потенциальная

 

Eр = F H  Ек ↑ ↔ υ↑

 

Энергия взаимного положения

 

 Кинетическая

Eр = mg H  Ек ↓ ↔ υ ↓

Энергия вследствие движения

 

Таблица: «Равномерное прямолинейное движение»

Рисунок

Физическая величина

Определение

Единица измерения

Равномерное

прямолинейное движение

υ =S/ t

 

Скорость

 

[υ] =

Путь

 

[S] =

Масса

 

[m] =

Плотность

 

[ρ] =

Сила

 

[F] =

Вес

 

[P] =

 

Схема: «Звуковая волна»

 

 

Таблица : «Периодическое движение»

 

2. КОСПЕКТЫ УРОКОВ С ЭЛЕМЕНТАМИ

СИСТЕМАТИЗАЦИИ И ОБОБЩЕНИЯ

 

Урок обобщения и повторения по теме:

“Тепловые явления”

 

*Рекомендации: проводить этот урок после изучения первой главы, с целью упорядочивания знаний и построения логической структуры изученного.

ЦЕЛЬ: ОБОБЩИТЬ ИЗУЧЕННЫЙ МАТЕРИАЛ НА ТЕМУ ТЕПЛОВЫЕ ЯВЛЕНИЯ, ПРОДЕМОНСТРИРОВАТЬ СВЯЗЬ С ЖИЗНЬЮ.

ЗАДАЧИ:

                1.      Образовательные

– выявление уровня усвоения основных понятий, явлений, умения отличать явления по физическим проявлениям;

- продолжить формирование навыков самоконтроля.

                2.      Воспитательные

                –       содействовать       формированию       мировоззренческой        идеи

познаваемости явлений и свойств окружающего мира;

- показать значение изученного для науки и техники.

3. Развивающие

– работать над формированием умений анализировать свойства и явления на основе знаний, продолжить работу по формированию умений делать выводы из наблюдений.

Ход урока.

Структурные элементы урока

Деятельность учителя и учащихся

Приемы работы учителя и учащихся

Организационный момент.

 

 

 

Постановка задачи урока.

 

 

 

 

 

 

 

 

 

Выявление знаний, подлежащих проверке. Повторение теоретических положений при работе со структурной таблицей ( таблица №2, ст 57).

 

Выступление ребят с рефератами на тему тепловых явлений.

 

 

Подведение итогов обобщения и систематизации.

 

 

 

Творческая работа по составлению индивидуального огтчета.

 

Приветствие.

 

 

 

 

Учитель отмечает, что ребята при изучении данной темы получили новые знания о тепловых явлениях, было введено много понятий и на этом уроке все ученики должны вспомнить, что было изучено и расставить все понятия по своим местам, в итоге учитель оценит степень упорядочивания у каждого. Выясняет, что же знают ученики о внутренней энергии.

 

С помощью кодоскопа воспризводят данные структурные элементы по средству наводящих вопросов (постепенно открывает закрытые слова). Ребята активно участвуют в образовании

структурной связи. Приводят примеры из жизненных наблюдений.

 

 

Учащиеся слушают докладчиков, задают вопросы (или учитель задает вопросы ко всем на основе изложенного).

 

 

Учитель предлагает ребятам просмотреть записи и спросить у него то, что ученик может не совсем понял.

 

 

 

Ребятам дается задание написать мини-сочинение о тепловых явления, с ответами на вопросы где, какие явления встречаются в жизни. Уровень усвоения материала (самооценка). Свое отношение к предмету физики.

Организация дисциплины и рабочей обстановки.

Обращение учителя к классу.

 

Фронтальный опрос по вопросам.

 

 

 

 

 

 

 

 

Выявление уровня усвоения. Запись в тетрадь. Проверка правильности заполнения схемы.

Беседа с классом.

 

 

Доклады учеников. Записи в тетрадях основных моментов. Эвристическая беседа.

 

Эвристическая беседа, подведение итогов работы ребят, отмечание активных и неподготовленных

 

Запись в рабочих тетрадях (с целью проанализировать умение вести тетради по физике, отношение к д/р)

 

 

Урок №2. Три состояния вещества

 

ЦЕЛЬ: ученик должен учиться применять знания о строении вещества, различать основные состояния и способы перехода.

ЗАДАЧИ УРОКА.

Образовательные:

-                      формировать умение работать по схемам, составлять таблицы систематизации и обобщения, выявить пробелы в знаниях и исправить.

Воспитательные:

-                      подчеркнуть взаимосвязь строения вещества и внешних его свойств как пример проявления одного из признаков метода диалектического познания явлений;

-                      показать значение этих связей для науки и техники.

Развития мышления:

-                      работать над формированием умений анализировать свойства и явления на основе знаний.

Рекамендации к уроку. Систематизацию можно проводить перед изучением двигателей и турбин, так как систематизированный материал поможет им при подготовке к контрольной работе. Уровень усвоения должен проверяться не сразу после обобщения, а через несколько уроков (изучение двигателей, турбин и КПД) т.к тогда ребята произведут систематическое повторение, что благотворительно отразится на качестве запоминания.

 

Структурные элементы урока

Деятельность учащихся и учителя

Приемы работы учителя и учащихся

Организационный момент

 

 

 

Постановка цели урока

 

 

 

Приветствие. Выяснение частных вопросов

 

 

Учитель отмечает, что вода, пар и лед обладают различными свойствами. На уроке необходимо вспомнить все эти свойства и объяснить их различие,

Установление дисциплины и рабочего порядка. Опрос дежурного

 

Обращение учителя

 

 

 

 

 

 

 

Активизация полученных знаний

 

 

 

 

 

 

 

 

 

 

 

Применение знаний для заполнения таблицы (Т№6, ст

58)

 

Практическое применение знаний

Подведение итогов работы

 

Творческое задание

способы перехода в различные состояния.

 

Учитель проводит опрос по цепочке в форме игры с зарабатыванием баллов в виде карточек, которые в конце урока можно будет обменять на сладости. Если ученик не отвечает на доставшийся вопрос, этот вопрос достается желающему отвечать

Учитель и учащиеся при активной совместной работе заполняют таблицу, сопровождая заполнение беседой о применении явлений в жизни

Решение качественных задач

 

Подсчитывание баллов, выставление оценок. учащиеся задают вопросы, оставшиеся неясными для них

 

Ребята пишут мини-сочинение о том, что они узнали нового

 

 

Опрос-игра “заработай на знаниях”.

Фронтальный опрос

 

 

 

 

 

 

 

Записи в тетради. Эвристическая беседа

 

 

Фронтальная работа

 

 

 

Обращение к учащимся, рассказ

 

 

 

Кратковременное сочинение.

 

Урок №3. Действия электрического тока. 

Направление тока. Сила тока

 

Цель урока: познакомить учащихся с превращением энергии электрического тока в другие виды энергии.

Задачи урока.

1. Образовательные:

- учащиеся должны научиться самостоятельно приводить примеры действия тока на основе жизненных наблюдений, должны демонстрировать понимание физического смысла силы тока.

2. Воспитательные:

- сформировать умение дисциплинированно себя вести, развивать познавательный интерес.

                3.      Развивающие:

- способствовать развитию аккуратности, памяти, абстрактного мышления, умению воспринимать систематизированный материал.

 

Демонстрации:

1.)   поворот металлической рамки при замыкании цепи

2.)   знакомство с принципом работы гальванометра.

 

План урока.

1. организационный момент

2-3 мин

Приветствие, опрос дежурных, обращение к ученикам

2.проверка д/з, повторение

5 мин

Фронтальный опрос.

Изучение нового материала.

А)тепловое действие

Б) химическое действие

В) магнитное действие тока

Г) световое действие

Д) звуковое действие

Е) направление эл/тока

Ж) сила тока, единицы силы тока

 

 

 

 

 

 

 

20-21 мин

 

Объяснительно-дем. изложение., эвристическая беседа, демонстрации опыта, использование таблицы систематизации (С№2, ст 21)

 

3. закрепление изученного

6-7 мин

Письменный опрос (фронтальный), устный рассказ-обобщение.

4. Инструкции к д/з

2 мин

Обращение учителя, инструктаж

 

Ход урока

Действия учителя

Действия учащихся

Приветствие ребят. Заполнение в журнале отсутствующих. Задает вопрос о том, какие трудности возникли при подготовке.

“Если трудности не возникли, проведем небольшой опрос” 1) Какие источники и приемники тока вы можете привести в пример? (зарисуйте некоторые элементы)

 

 

“На доске начерчена цепь, назовите ее основные части”.

 

 

Приветствуют учителя. Создают дисциплину в классе. Повторяют д/з.

 

Ребята поднимают руки и отв.:” лампы, плитки, телевизоры, компьютеры”. По желанию чертят обозначения.

 

“Батарея элементов, лампочка, звонок, ключ.”

 

 

“разомкнута”

 

 

“Правильно. Эта цепь замкнута или разомкнута?”

“Что представляет собой эл/ ток в металлах?”

 

“Верно. А теперь приступим к новой теме”.

 

“Движение заряженных частиц нельзя увидеть непосредственно, но о нем можно судить по различным явлениям. Дайте посмотрим на схему и вместе определим, по каким признакам ясно, что ток есть”.

“Явления, которые наблюдаются при наличии эл/тока, называют действиями тока. Первое действие – тепловое, приведите пример”.

“Химическое действие наблюдается, если пропустить э/ток через электролит, н-р, раствор медного купороса. При этом медь осядет на пластинке, т.к. молекулы раствора распадутся на пол.и отр. заряженные ионы. А теперь приведите примеры, где это может использоваться” “Для того, чтобы понять магнитное действие, смотрим на опыт”. Проводит опыт. “Что вы наблюдали?”

 

“Правильно. Это явление используется в уже знакомых вам приборах – гальванометрах. Кто сможет объяснить принцип работы на основе увиденного?”

“Объясните мне как вы понимаете световое и звуковое действия.”

“Теперь вернемся к электрической цепи, как вы думаете куда направлен эл.ток?”

“Исторически сложилась установка, что ток направлен от плюса к минусу, так как движение тока обусловлено стремлением эл. зарядов установить равенство на полюсах,

т.е. чтобы потенцилы на обоих полюсах сравнялись. Нарисуйте, пожалуйста, как направлен ток, а потом проверим”

“Действие эл. Тока может быть различным по своей интенсивности. Сравнивая эл.ток с течением воды в трубе. Чем больше воды пройдет через ед.площадку за единицу времени, тем сила тока воды больше. Так с силой тока электронов: чем больше частиц пройдет от одного полюса к другому, тем больший заряд они перенесут “. Диктует определение.

“За основу единицы силы тока было взято явление взаимодействия двух проводников с током. “ Диктует смысл ед. силы тока.

 

“Направленное движение свободных электронов” Записывают число и тему урока: “ Действия эл/тока. Сила тока. Направление эл/тока.” Слушают учителя, отвечают на текущие наводящие вопросы. Смотрят на схему на доске.

 

 

 

 

Обогреватели, нагревание технических приборов.

 

 

 

 

“Пример: позолочивание колец и т.д”

 

 

“При появлении тока рамка поворачивалась, при размыкании цепи – возвращалась на место.”

 

Учащиеся объясняют принцип работы на основе своего понимания.

-//- 

Ребята задумываются.

 

 

Слушают.

 

 

 

с/м указывают направление, потом кто-то на доске это делает.

 

 

 

 

 

 

Записывают: сила тока- І-эл.заряд, проходящий через поперечное сечение проводника в 1 с.

І = q / t

 

 

 

“А теперь обобщим все изученное.

1)                   могут ли жидкости быть проводниками?

2)                   Куда направлен ток?

3)                   Как зависит сила тока от заряда?”

“А теперь откройте страницу в тетрадях со схемой. (схема №3, ст 57) Я буду называть явления, а вы распределяйте по вашему усмотрению.”

“Откройте дневники и запишите задание: создать схему по параграфу 33, т.е. разбить на группы элементы эл. цепей (Схема №5, ст. 59) Выучить параграфы35-36. выполнить упр.14(1,2). Спасибо за урок.”

 

Записывают: за единицу силы тока принимают силу тока, при котором отрезки параллельных проводников длиной 1 м взаимодействуют с силой 2*10 Н.

 

“ Да, если растворы солей.”

 

“ от плюса к минусу”

“ прямопропорционально”

Работают по указанию учителя.

 

Тема урока: Систематизация и обобщение по теме: «Механические волны. Акустика»

 

Цель урока: систематизировать и обобщить знания о механических волнах.

Образовательные задачи:

1)                 учащиеся должны освоить материал на уровне осмысленного воспроизведения;

2)                 учащиеся должны знать основные понятия и характеристики звука;

3)                 учащиеся должны демонстрировать навыки обобщения и систематизации с помощью учебника и основываясь на собственные знания.

Воспитательные задачи:

1) учащиеся должны проявлять потребности в знаниях; 2) учащиеся должны демонстрировать умение работать организованно, в творческих группах;

3) учащиеся должны демонстрировать аккуратность, целеустремленность, умение оперативно выполнять требования учителя.

Развивающие задачи:

1) учащиеся должны уметь обосновать предложенную систематизацию;

1)     учащиеся должны проявить творчество;

2)     учащиеся    должны      демонстрировать умение        анализировать, грамотно строить ответы на вопросы учителя.

Тип урока: полное учебное занятие, обобщения и систематизации.

Метод обучения: продуктивный (наглядно-практический), работа в группах.

Принципы обучения: наглядность, систематичность, доступность, научность.

Оборудование: графопроектор с дидактическим материалом, учебник

(схемы № 12, 14 ст.64-65)

 

План урока

Название этапа

Метод

Время

1. Организационный момент

Беседа

1 мин

2. Постановка целей и задач

Монолог учителя

2 мин

3. Актуализация знаний

Разгадывание кроссворда

7 мин

4. Процесс систематизации и обобщения

Работа в группах, работа с книгой.

Составление таблиц

18 мин

5. Анализ результата работы

Фронтальная работа, демонстративный метод

10 мин

6. Подведение итогов

Беседа

2 мин

 

Ход урока.

Деятельность учителя

Деятельность учащихся

- Здравствуйте, ребята! Отметим отсутствующих на уроке.

-Сегодня на уроке мы займемся систематизацией и обобщением материала о механических и звуковых волнах, составим обобщающие таблицы, с тем чтобы наглядно продемонстрировать результат работы.

Заранее приготовьте линейки и карандаши.

-Итак, для начала вспомним основные понятия темы, разгадав кроссворд. Пожалуйста, поднимайте руки, если догадались, иначе не оценивается ответ. За правильное слово получаете синюю карточку, в дальнейшем она вам поможет заработать баллы для команды, так как вы будете потом работать в группах.

1.                   Какая волна распространяется движением пружины, и дайте ее определение.

2.                   Для какой волны характерно распространение

-Приветствуют учителя.

Дежурные отмечают отсутствующих.

-Слушают учителя, выполняют требования.

 

 

 

 

 

 

-Участвуют в разгадывании кроссворда.

 

 

 

колебаний по закону синуса или косинуса?

3.                  Как называются положения точек, имеющих максимальную амплитуду колебаний?

4.                  От чего зависит порог слышимости звука?

5.                  Для какой волны характерно иметь пучности? 6. Какие волны вызывают у человека слуховые ощущения?

7.  Какие волны не возникают в газах и жидкостях?

8.  Дайте определение полученного слова в центре.

-А теперь, ребята, разделяемся на две команды. Первая команда получает задание систематизировать знания по механическим волнам, а вторая по звуковым волнам. Итак, получается по 12 человек в каждой команде. Вам надо будет разделить обязанности:

1)                 составить таблицы или схемы по данному материалу по учебнику.

2)                 продемонстрировать решение задачи на данную тему.

3)                 поискать в дополнительных источниках что-то новое по предложенной теме, чего нет в учебнике, но что можно объяснить для товарищей доступным языком (представляется набор дополнительного материала из библиотеки учителя физики). На все это вам дается 15-18 мин. Приступайте.

-Учитель следит за тем, чтобы ребята справились с заданием за 15-18 мин, помогает в выборе литературы, корректирует ответы, следит за дисциплиной в классе.

- Итак, давайте разберем предоставленные решения задач. Первая команда, объясните решение и почему вы выбрали именно эту задачу.

 

-Молодцы ребята, получаете 3 синие карточки, так как правильно решено и отмечено две важные причины рассмотрения этой задачи.

-Итак, вторая команда.

 

 

 

 

-Молодцы, так же получаете 3 синих карточек. -Следующее задание – показать схемы обобщения и систематизации, итак смотрим на доску, а ученики

 

 

1.                  Продольная волна – волна, в которой движение частиц происходит в направлении распространения волны.

2.                  Для гармонической волны.

3.                  Пучности стоячей волны.

4.                  От интенсивности звуковой волны.

5.                  Для стоячей волны.

6.                  Звуковые волны.

7.                  Поперечные волны – волна, в которой частицы среды распространяются перпендикулярно направлению распространения волны.

8.                  Специальная область физики, посвященная изучению звука.

-Ребята слушают указания учителя и распределяют задания. По ходу процесса на доске учащиеся готовят по одному решению задачи из каждой команды и получившиеся схемы. Учащиеся, работающие с дополнительным материалом выписывают, себе в тетрадь интересные сообщения и готовятся к докладу.

 

 

 

 

 

1.Задача: Колебания, происходящие с частотой ν, имеют в первой среде длину волны λ, а во второй 2λ. Определите отношение скоростей распространения волн в первой и второй средах.

Дано: Решение:

λ2= 2λ λ= υT формула для ν длины волны, из нее υ1 / υ2 найдем скорость: υ= λ/Т υ1 / υ2 = λ1/Т: λ2 /Т

Период одинаков для обоих сред, поэтому

объясняют, на каком основании систематизировали материал.

-Делает замечание, что схема совсем легкая.

Спрашивает ребят, как можно дополнить.

-За каждое дополнение ребята получают по карточке.

 

 

-Теперь посмотрим схему второй команды.

 

 

-Что можно добавить?

 

 

 

- Молодцы, а теперь слово предоставляется для информаторов.

 

-Учитель раздает по карточке за каждую интересную новость, и считают, сколько в общей сложности набрано карточек. Та, команда, которая набрала больше баллов, зарабатывает пятерки, самые активные из другой команды так же оцениваются. -Итак, ребята. Понравился ли вам урок, узнали ли вы что-то нового? Что именно запомнилось? Буквально два предложения запишите у себя в тетради.

-На этом мы закончили с темой механические волны и звук. Если вас заинтересовал дополнительный материал, подходите и под запись можете взять книги для изучения.

сокращаются

υ1 / υ2 = λ1/ λ2 = λ1/ 2 λ1 = 0,5

Ответ: скорость уменьшается в два раза. Эта задача выбрана для того, чтобы продемонстрировать основную формулу для механических волн и показать прямую

пропорциональную зависимость между длиной волны и ее скоростью при постоянной частоте.

 

 

Задача: Струна, длиной 60 см издает звук с частотой основной моды 1 кГц. Чему равна скорость звука в струне? Дано: СИ L= 60 см 0,6 м ν= 1 кГц 1000 Гц

υ - ?

Решение.

Длина волны для струны определим из формулы:

L/ 0,5λ = n, n=1 и λ =2 L. υ= λ/ T= λ ν = 2Lν υ= 2* 0,6*1000= 1,2 км/с Ответ: 1,2 км/с.

В задаче использована основная формула связующая основные величины в звуковой волне. Так же показано как, воспользоваться теорией струн.

-                      На доске схемы или таблицы. (смотреть схемы №12, 14, ст. 64-65). Механические волны существуют двух видов, в обоих случаях длина волны находится по одной формуле.

 

-Ребята отвечают, что можно подписать для наглядности 1-2 примера для каждой волны. - можно указать какие волны в каких средах распространяются и т.д.

-                      Смотреть схему № . Она составлена с целью показать все основные знания о звуковой волне. -Можно добавить, что скорость звуковой волны равна скорости света, определяется по известной формуле и т.д.

-                      информаторы по очереди выходят к доске и в течение 1-2 мин. Сообщают интересные, неизвестные им до этого факты.

 

Тема урока: Систематизация и обобщение по разделу:

«Геометрическая оптика»

 

Цель урока: сформировать систематизированное представление геометрической оптики.

Образовательные задачи:

1)                 учащиеся должны освоить материал на уровне осмысленного воспроизведения;

2)                 учащиеся должны знать основные понятия, определения и формулы из геометрической оптики;

3)                 учащиеся должны демонстрировать навыки обобщения и систематизации с помощью учебника и основываясь на собственные знания.

Воспитательные задачи:

1) учащиеся должны проявлять потребности в знаниях; 2) учащиеся должны демонстрировать умение работать организованно;

3) учащиеся должны демонстрировать аккуратность, целеустремленность, умение оперативно выполнять требования учителя.

Развивающие задачи:

1)                 учащиеся должны уметь дополнять предложенную систематизацию, выдвигать свои замыслы по систематизации и обобщению;

2)                 учащиеся должны проявить творчество;

3)                 учащиеся должны демонстрировать умение анализировать, грамотно строить ответы на вопросы учителя.

Тип урока: полное учебное занятие, обобщения и систематизации.

Метод обучения: продуктивный (наглядно-практический).

Принципы обучения: наглядность, систематичность, доступность, научность.

Оборудование: графопроектор с дидактическим материалом, учебник

(схемы №18, таблица №12 ст.68,70)

 

План урока

Название этапа

Метод

Время

1. Организационный момент

Беседа

1 мин

2. Постановка целей и задач

Монолог учителя

2 мин

3. Актуализация знаний

Аукцион знаний

7 мин

4. Процесс систематизации и обобщения

Демонстрация схем учителя и учащихся. Защита проектов

28 мин

5. Подведение итогов

Беседа

2 мин

 

Ход урока.

Деятельность учителя

Деятельность учащихся

-                      Здравствуйте, ребята! Отметим отсутствующих на уроке.

-Сегодня на уроке мы займемся систематизацией и обобщением материала по разделу геометрическая оптика. На дом вам было дано задание приготовить схемы и таблицы по обобщению и систематизации. Сегодня на уроке мы рассмотрим ваши таблицы и предложенные мною. У нас будет своеобразная защита проектов (учащиеся приготовили в качестве домашнего задания на прозрачной пленке от файла материалы обобщения).

-Итак, для начала вспомним основные понятия, кто ответит последним, в аукционе зарабатывает пятерку в журнал. Называем основные определения и формулы, тех кто не отвечает, спрашиваем в первую очередь в защите проектов.

 

 

 

-                      хорошо победил в нашем аукционе Иванов, а наиболее активными были Петров и Сидорова, они получают по пятеркам. Аукцион знаний показал, что вы достаточно хорошо приготовились и повторяли дома материал.

-Приступим теперь к защите своих схем и таблиц, начну я и покажу, как это надо делать, далее вы продолжите по желанию либо по журналу.

-                      Итак, я подготовила схему и таблицу. Первая схема называется «Оптические приборы». Смотрим внимательно на экран графопроектора. На этой схеме представлены основные приборы, работа которых

-Приветствуют учителя.

Дежурные отмечают отсутствующих.

-Слушают учителя, выполняют требования.

 

-Участвуют в аукционе знаний.

К, примеру, угол падения луча – угол между падающим лучом и и перпендикуляром к границе раздела двух сред в точке падения.

-мнимое изображение - изображение предмета, возникающее при пересечении продолжения расходящегося пучка лучей.

-дисперсия света – зависимость скорости света от длины волны.

-собирающие линзы – выпуклые линзы,

преобразующие параллельный пучок световых лучей в сходящиеся.

- и так далее по аналогии.

 

 

 

 

 

 

 

-Слушают учителя.

 

 

 

 

 

-Смотрят на экран, слушают учителя и задают

 

основана на законах геометрической оптики. С помощью схемы можно наглядно увидеть разницу строении приборов, разрешающей и увеличительной способности. В зависимости от углового увеличения использование приборов на практике лупа – самый доступный, часто применяется по назначению в обыденной жизни, но увеличительная способность небольшая. В профессиональной деятельности применяется в работе часовых мастеров, лор-врачей, изготовителей ювелирных украшений. Оптический микроскоп обладает большой увеличительной способностью, потому что он состоит из системы линз. Применяется в работе исследователей строения вещества, микробиологии, науке и других областях. Телескоп- рефрактор предназначен для изучения удаленных предметов больших размеров, наиболее дорогостоящий, так как более сложна система сбора.

Можно было бы дополнить эту систематизацию разработав еще подвиды микроскопов, телескопов.

Кто пожелает, может дома дополнить.

Вторая работа – таблица, которая может послужить шпаргалкой при определении характера изображения в зависимости от расположения предмета в зависимости от фокусного расстояния. Эта таблица показывает, для какой линзы как надо строить изображение.

-А теперь я попрошу вас выступить со своими схемами и таблицами.

 

-Учитель оценивает работы, подчеркивает важные элементы. Следит за ходом творческой работы учащихся.

- Итак, ребята сегодня мы с вами увидели, что материал объемен, но благодаря схемам и таблицам мы можем заострить внимание на самом важном, увидеть признаки общие и различные для явлений, предметов. Наиболее удачными на, мой взгляд, являются схемы Васильева, Кузина и Гориной. Урок показал, что вы уже достаточно повзрослели, чтобы самим строить обобщающие таблицы. Можно сравнить все сегодняшние таблицы с тем, что было вам предоставлено в восьмом классе (см. дополнение к уроку). Итак, по вашему мнению, достигли вы

вопросы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-Учащиеся по очереди выступают и демонстрируют приготовленные схемы. Поясняют, на какой основе строилась схема, что по ней можно определить.

 

-Слушают учителя.

 

 

 

 

 

 

 

 

высоких результатов, научившись сами систематизировать материал?

-Всем спасибо за урок, за выполнение моего задания.

 

 

 

 

- отвечают, что они научились и с собственным желанием подходят к вопросу обобщения и систематизации.


 

Таблица: «Виды линз и ход лучей»

 

Схема  «Световые явления»

 

 

 

 

 

 

Разработчик: 

        Капин А.В., преподаватель химии и физики Государственного бюджетного образовательного учреждения начального профессионального образования профессионального лицея №13 Московской области.

 

 

 

 

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К УЧЕБНОЙ ДИСЦИПЛИНЕ «ФИЗИКА»"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Мастер зеленого хозяйства

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

МЕТОДИЧЕсКИЕ РЕКОМЕНДАЦИИ к УЧЕБНОЙ ДИСЦИПЛИНе


«Физика»

 

для  профессий: 190631.01 «Автомеханик»,

262019.01 «Художник по костюму»,

 150709.02 «Сварщик» (электросварочные и газосварочные работы).

 

 

 

 

 

 

 

г. Раменское

2013г.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 655 198 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 10.03.2015 343
    • PDF 834 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Капин Артем Витальевич. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Капин Артем Витальевич
    Капин Артем Витальевич
    • На сайте: 9 лет и 5 месяцев
    • Подписчики: 4
    • Всего просмотров: 450797
    • Всего материалов: 377

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Интернет-маркетолог

Интернет-маркетолог

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

ЕГЭ по физике: методика решения задач

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 116 человек из 44 регионов
  • Этот курс уже прошли 1 117 человек

Курс повышения квалификации

Организация проектно-исследовательской деятельности в ходе изучения курсов физики в условиях реализации ФГОС

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 98 человек из 45 регионов
  • Этот курс уже прошли 658 человек

Курс повышения квалификации

Теоретическая механика: векторная графика

36 ч. — 180 ч.

от 1580 руб. от 940 руб.
Подать заявку О курсе

Мини-курс

Этапы развития речи: от первых звуков до полноценной коммуникации

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 166 человек из 51 региона
  • Этот курс уже прошли 128 человек

Мини-курс

Wildberries: от управления заказами до продвижения товаров

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 55 человек из 26 регионов

Мини-курс

Практические навыки трекинга и менторства

4 ч.

780 руб. 390 руб.
Подать заявку О курсе