Главная / Физика / Конкурсная работа по физике «Изучение влияния физических параметров на использование солнечной энергии на территории Хакасии»

Конкурсная работа по физике «Изучение влияния физических параметров на использование солнечной энергии на территории Хакасии»



Муниципальное бюджетное общеобразовательное учреждение «Лицей»






Физика



«Изучение влияния физических параметров на использование солнечной энергии на территории Хакасии»


Автор:

Виноградов Александр Викторович,

МБОУ «Лицей»,

ученик 10а класса

Руководитель:

Тартачакова Татьяна Николаевна,

МБОУ «Лицей»,

учитель физики

г. Черногорск-2014





СОДЕРЖАНИЕ




Введение


I.Теоретическая часть

1. Использования солнечной энергии человеком.

2.Способы использования солнечной энергии.

3.Фотоэлементы.


II. Практическая часть

  1. Исследование зависимости падающей солнечной энергии на единицу площади за единицу времени от физических параметров.

  2. Анализ статистических данных.

3.Ведение дневника наблюдения.


III. Заключение.

Список литературы.

Приложение.












ВВЕДЕНИЕ

С неба смотрит солнце

Миллионы лет.

Льет на землю солнце

И тепло и свет.

(Д. Гулиа. Перевод С. Маршака)


Уже древнейшие люди думали, что вся жизнь на Земле порождена и неразрывно связана с Солнцем. Человек понимал, насколько комфортнее жить в солнечное время суток, с продолжительностью светового дня была связана активная часть жизни человека. От солнца он непосредственно получал свет и тепло. В религиях самых разных населяющих Землю народов, одним из самых главных богов всегда был бог Солнца, дарующий животворящее тепло всему сущему. «1»(приложение.1)

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество -энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства.

В последнее время интерес к проблеме использования солнечной энергии резко возрос, внимание, уделяемое ему во всем мире, заставляет рассмотреть его возможности отдельно. Академик Прохоров, лауреат Нобелевской премии, сказал, что у человечества есть два энергетических пути - атомный и солнечный. Но последствия использования атомной энергетики человечество уже ни раз испытывает на себе( последние события в Японии).

Рост цен на энергоносители в России заставляет проявлять интерес к дешевым источникам энергии. Наиболее доступной является солнечная энергия. Энергия солнечной радиации, падающая на Землю, в 10 000 раз превышает количество вырабатываемой человечеством энергии.

В 2007 году российский рынок постепенно начал проявлять интерес к солнечной энергетике. Не обошел этот вопрос и территорию Хакассии, после аварии на Саяношушенской ГЭС, производство на стратегически важном для России Саянском Алюминиевом заводе было на грани срыва.


4






Меня заинтересовал вопрос, а возможно ли использования солнечной энергии на территории нашей Республики?


Тем более, что в Хакасии был разработан проект возведении Абаканского завода полупроводниковых материалов (АЗПМ).

Впервые фотоэлемент я увидел на уроке физике в 8 классе при изучении темы: «Источники электрического тока » (приложение.2). И уже тогда появилась желание разобраться в этом вопросе более подробно, а возможно и использовать эти знания в практических целях.

Выбранная мной тема интересна, актуальна, современна и значима.



Объект исследования: Использование солнечной энергии.


Предмет исследования: Физические параметры.


Цель: Изучение зависимости использования солнечной энергии на территории Хакасии от физических параметров, а как следствие от географической широты.

Задачи:

  1. Изучить теорию вопроса;

  2. Провести экспериментальное исследование;

  3. Провести сравнительный анализ на основе дневника наблюдений и архивных данных.

Гипотеза: Предполагаю, что возможность использования солнечной энергию зависит от угла падения солнечных лучей, от площади поверхности, от интенсивности светового потока, от вида поверхности.


Методы исследования:

  1. Теоретический -изучение первоисточников;

  2. Визуальное наблюдение;

  3. Лабораторный- проведение эксперимента;

  4. Аналитический -анализ полученных результатов;

  5. Синтез-обобщение полученных знаний.






5



I.Теоретическая часть


1.ИСТОРИЯ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ ЧЕЛОВЕКОМ.(приложение1)


Количество энергии, поступающей на Землю от ближайшей к нам звезды, огромно. Всего за три дня Солнце посылает Земле столько энергии, сколько содержится ее во всех разведанных нами запасах топлива! И хотя только третья часть этой энергии достигает Земли — остальные две трети отражаются или рассеиваются атмосферой, — даже эта ее часть более чем в полторы тысячи раз превосходит все остальные, используемые человеком источники энергии, вместе взятые! Да и вообще все источники энергии, имеющиеся на Земле, порождены Солнцем. В конечном счете именно солнечной энергии человек обязан всеми своими техническими достижениями. Благодаря солнцу возникает круговорот воды в природе, образуются потоки воды, вращающей водяные колеса. По-разному нагревая землю в различных точках нашей планеты, солнце вызывает движение воздуха, тот самый ветер, который наполняет паруса судов и вращает лопасти ветряных установок. Все ископаемое топливо, используемое в современной энергетике, ведет свое происхождение опять же от солнечных лучей. Это их энергию с помощью фотосинтеза преобразовали растения в зеленую массу, которая в результате длительных процессов превратилась в нефть, газ, уголь.

Нельзя ли использовать энергию солнца непосредственно? На первый взгляд это не такая уж сложная задача. Кто не пробовал в солнечный день при помощи обыкновенной лупы выжигать на деревянной дощечке картинку! Минута, другая — и на поверхности дерева в том месте, где лупа собрала солнечные лучи, появляется черная точка и легкий дымок. Именно таким образом один из самых любимых героев Жюля Верна, инженер Сайрус Смит, выручил своих друзей, когда у них, попавших на таинственный остров, погас костер. Инженер сделал линзу из двух часовых стекол, пространство между которыми было заполнено водой. Самодельная «чечевица» сосредоточила солнечные лучи на охапке сухого мха и воспламенила его.Этот сравнительно нехитрый способ получения высокой температуры люди знали с глубокой древности. В развалинах древней столицы Ниневии в Месопотамии нашли примитивные линзы, сделанные еще в XII веке до нашей эры. Только «чистым» огнем, полученным непосредственно от лучей солнца, полагалось зажигать священный огонь в древнеримском храме Весты.

6




Интересно, что древними инженерами подсказана и другая идея концентрации солнечных лучей — с помощью зеркал. Великий Архимед оставил нам трактат «О зажигательных зеркалах». С его именем связана поэтическая легенда, рассказанная византийским поэтом Цецесом.

Во время Пунических войн родной город Архимеда Сиракузы был осажден римскими кораблями. Командующий флотом Марцелл не сомневался в легкой победе — ведь его войско было намного сильнее защитников города. Одного не учел заносчивый флотоводец — в борьбу с римлянами вступил великий инженер. Он придумал грозные боевые машины, построил метательные орудия, которые осыпали римские корабли градом камней или увесистой балкой пробивали дно. Другие машины крючковатым краном поднимали суда за нос и разбивали их о прибрежные скалы. А однажды римляне с изумлением увидели, что место воинов на стене осажденного города заняли женщины с зеркалами в руках. По команде Архимеда они направили солнечные зайчики на одно судно, в одну точку. Через короткое время на судне вспыхнул пожар. Та же участь постигла еще несколько кораблей нападавших, пока они в растерянности не бежали подальше, за пределы досягаемости грозного оружия.

Долгие века эта история считалась красивым вымыслом. Однако некоторые современные исследователи истории техники провели расчеты, из которых следует, что зажигательные зеркала Архимеда в принципе могли существовать.

Использовали наши предки солнечную энергию и в более прозаических целях. В Древней Греции и в Древнем Риме основной массив лесов был хищнически вырублен для строительства зданий и судов. Дрова для отопления почти не использовались. Для обогрева жилых домов и оранжерей активно использовалась солнечная энергия. Архитекторы старались строить дома так, чтобы в зимнее время на них падало бы как можно больше солнечных лучей. Древнегреческий драматург Эсхил писал, что цивилизованные народы тем и отличаются от варваров, что их дома «обращены лицом к солнцу». Римский писатель Плиний Младший указывал, что его дом, расположенный севернее Рима, «собирал и увеличивал тепло солнца за счет того, что его окна располагались так, чтобы улавливать лучи низкого зимнего солнца».

Раскопки древнего греческого города Олинфа показали, что весь город и его дома были спроектированы по единому плану и располагались так, чтобы зимой можно было поймать как можно больше солнечных лучей, а летом, наоборот, избегать их.



7




Жилые комнаты обязательно располагались окнами к солнцу, а сами дома имели два этажа: один—для лета, другой—для зимы. В Олинфе, как и позже в Древнем Риме, запрещалось ставить дома так, чтобы они заслоняли от солнца дома соседей,—урок этики для сегодняшних создателей небоскребов!

Кажущаяся простота получения тепла при концентрации солнечных лучей не однажды порождала неоправданный оптимизм. Немногим более ста лет назад, в 1882 году, русский журнал «Техник» опубликовал заметку об использовании солнечной энергии в паровом двигателе: «Инсолатором назван паровой двигатель, котел которого нагревается при помощи солнечных лучей, собираемых для этой цели особо устроенным отражательным зеркалом. Английский ученый Джон Тиндаль применил подобные конические зеркала очень большого диаметра при исследовании теплоты лунных лучей. Французский профессор А.-Б. Мушо воспользовался идеей Тиндаля, применив ее к солнечным лучам, и получил жар, достаточный для образования пара. Изобретение, усовершенствованное инженером Пифом, было доведено им до такого совершенства, что вопрос о пользовании солнечной теплотой может считаться окончательно решенным в положительном смысле».Оптимизм инженеров, построивших «инсолатор», оказался неоправданным. Слишком много препятствий предстояло еще преодолеть ученым, чтобы энергетическое использование солнечного тепла стало реальным. Лишь сейчас, через сто с лишним лет, начала формироваться новая научная дисциплина, занимающаяся проблемами энергетического использования солнечной энергии, — гелиоэнергетика. И лишь сейчас можно говорить о первых реальных успехах в этой области.

В чем же сложность? Прежде всего, вот в чем. При общей огромной энергии, поступающей от солнца, на каждый квадратный метр поверхности земли ее приходится совсем немного — от 100 до 200 ватт, в зависимости от географических координат. В часы солнечного сияния эта мощность достигает 400—900 вт/м2, и поэтому, чтобы получить заметную мощность, нужно обязательно сначала собрать этот поток с большой поверхности и затем сконцентрировать его. Ну и конечно, большое неудобство составляет то очевидное обстоятельство, что получать эту энергию можно только днем. Ночью приходится использовать другие источники энергии или каким-то образом накапливать, аккумулировать солнечную энергию.






8



ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ В СОВРЕМЕННОМ МИРЕ.(приложение 5,6,7)

В большинстве стран мира количество солнечной энергии, попадающей на крыши и стены зданий, намного превышает годовое потребление энергии жителями этих домов. Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания и/или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Кроме этого, существует другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, "питая" гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающих благодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергией.







9





Солнечная энергия используется в следующих случаях:

  • обеспечение горячей водой жилых домов, общественных зданий и промышленных предприятий;

  • подогрев бассейнов;

  • отопление помещений;

  • сушка сельскохозяйственной продукции и др.;

  • охлаждение и кондиционирование воздуха;

  • очистка воды;

  • приготовление пищи. «2»

2.Способы использования солнечной энергии.

ПАССИВНОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.

В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия. (приложение 3 )

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий.


10




Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.

Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов.

При разработке пассивной солнечной системы в процессе выбора строительных материалов необходимо обратить внимание на их способность удерживать тепло. Эта величина называется объемной теплоемкостью (Дж/м3·оС) или, другими словами, это то количество тепла, которое способен поглотить и хранить материал.

Раньше проектировщики, работающие в области пассивного солнечного строительства, в качестве теплоносителя использовали воду, хранящуюся в больших контейнерах.

Хотя вода и является дешевой, контейнеры и место, которые они занимают, стоят достаточно дорого. Некоторые проектировщики перешли к емкостям, заполненным камнями, используя их как резервуары для тепловой массы. Нужно учитывать, что для сохранения того же количества тепла потребуется камней в три раза больше, чем воды. Однако влажная среда, образующаяся в местах, где устанавливаются емкости с водой, вызывает появление резкого неприятного запаха и является благоприятной средой для размножения грибков и бактерий. Эти проблемы подорвали репутацию такого варианта пассивного солнечного строительства.

11





Хранение тепла с помощью воды и камней требует сложных систем управления, насосов, и вентиляторов. Такой процесс сохранения тепла сегодня почти не используется. Основная причина этого состоит в том, что функционирование таких систем зависит от электроэнергии, эти системы требуют обслуживания, подвергаются периодическим поломкам и, соответственно, требуют ремонта.

Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.

 

АКТИВНОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ. ФОТОЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более. «3»









12

3.ФОТОЭЛЕМЕНТы

ИСТОРИЯ ФОТОЭЛЕМЕНТОВ

История фотоэлементов берет начало в 1839 году, когда французский физик Эдмон Беккерель открыл фотогальванический эффект. За этим последовали дальнейшие открытия:

  • В 1883 г. электрик из Нью-Йорка Чарльз Фриттс изготовил фотоэлементы из селена, которые преобразуют свет в видимом спектре в электричество и имеют КПД 1-2%. (светочувствительные элементы для фотоаппаратов до сих пор делают из селена).

  • В начале 50-х годов ХХ века был изобретен метод Чохральского, который применяется для выращивания кристаллического кремния.

  • В 1954 г. в лаборатории компании "Bell Telephone" синтезировали силиконовый фотоэлектрический элемент с КПД 4%, в дальнейшем эффективность достигла 11%.

  • В 1958 г. небольшие (менее 1 ватта) фотоэлектрические батареи питали радиопередатчик американского космического спутника "Авангард". Вообще, космические исследования сыграли важную роль в развитии фотоэлементов.

  • Во время нефтяного кризиса 1973-74 гг. сразу несколько стран запустили программы по использованию фотоэлементов, что привело к установке и опробованию свыше 3100 фотоэлектрических систем только в Соединенных Штатах. Многие из них до сих пор находятся в эксплуатации.

Рынок фотоэлементов

Современное состояние рынка фотоэлементов характеризуется достаточно стабильным ростом, порядка 20% в год, однако объемы производства фотоэлементов остаются довольно низкими. Производство модулей во всем мире в 1998 г. составило около 125 МВт, в то время как цена упала с 50 долларов за 1 ватт в 1976 г. до 5 долларов за 1 ватт в 1999 г. Тем не менее, киловатт-час электричества, выработанного фотоэлектрической системой, все еще дороже традиционной электроэнергии в 3-10 раз (в зависимости от конкретного местонахождения и вида системы). Таким образом, рынок фотоэлементов пока занимает небольшую нишу в мировой экономике. Но он продолжает стабильно расти в тех сегментах рынка, где фотоэлементы конкурентоспособны, например, в автономных, удаленных от электросети системах.



13





Во многих регионах мира прогресс весьма ощутим. Правительство Японии вкладывает 250 млн долларов в год в увеличение производственной мощности с 40 МВт (1997г.) до 190 МВт (2000г.). Европейские страны проводят собственные программы, стимулом к чему служит потребность в энергетической независимости и экологические соображения. Эти программы в сочетании с экологическими проблемами - такими, как изменение климата - способны значительно ускорить развитие этой отрасли. Компания "Shell Solar" построила в Германии крупнейший завод по производству фотоэлементов с годовым объемом производства в 10 МВт, который намечено довести до 25 МВт. Стоимость постройки завода -- 50 млн немецких марок.

Применение фотоэлементов

Солнечные фотоэлементы являются вполне реальной технически и экономически выгодной альтернативой ископаемому топливу в ряде применений. Солнечный элемент может напрямую превращать солнечное излучение в электричество без применения каких-либо движущихся механизмов. Благодаря этому, срок службы солнечных генераторов довольно продолжителен. Фотоэлектрические системы хорошо зарекомендовали себя с самого начала промышленного применения фотоэлементов. К примеру, фотоэлементы служат основным источником питания для спутников на околоземной орбите с 1960-х годов. В отдаленных районах фотоэлементы обслуживают автономные энергоустановки с 1970-х. В 1980-х годах производители серийных потребительских товаров начали встраивать фотоэлементы во многие устройства: от часов и калькуляторов до музыкальной аппаратуры. В 1990-х предприятия энергоснабжения начали применять фотоэлементы для обеспечения мелких потребностей пользователей.

Фотоэлектрические установки качают воду, обеспечивают ночное освещение, заряжают аккумуляторы, подают электричество в общую энергосистему и т. д. Они работают в любую погоду. При переменной облачности они достигают 80% своей потенциальной производительности; в туманную погоду - около 50%, и даже при сплошной облачности они вырабатывают до 30% энергии.

В наше время можно найти не только фотоэлектрические панели. Разные фирмы предлагают фотоэлементы в виде легких, эластичных и прочных кровельных плит, а также ненесущих стен-перегородок для фасадных работ. Эти новинки делают фотоэлементы экономически более привлекательными при включении их в состав строительных материалов.

14



В отдаленных районах фотоэлектрические установки являются наиболее рентабельным, надежным и долговечным источником энергии. В некоторых регионах фотоэлементы повышают конкурентоспособность систем, подключенных к электросети.

Однако главное - что и в отдаленных, и в подсоединенных к электросетям местностях фотоэлектрические системы вырабатывают чистую энергию, получение которой не сопровождается загрязнением окружающей среды, в отличие от привычных электростанций.

Насосные установки, работающие на солнечных фотоэлементах, эффективны и экономически выгодны в условиях практически любого применения водных насосов. Энергетические компании США обнаружили, что экономичнее использовать водяные насосы на солнечной батарее, чем обслуживать распределительные электрические линии, ведущие к удаленным насосам. Некоторые коммунальные предприятия предлагают насосные установки на фотоэлементах для выполнения заявок клиентов.

В сельских районах находится и другое применение фотоэлектрическим системам - зарядка и освещение электрических изгородей; обеспечение циркуляции воды, вентиляции, света и кондиционирования воздуха в теплицах и гидропонных сооружениях.

Фотоэлектрические модули снабжали электричеством воздушный шар "Breitling Orbiter 3" во время его беспосадочного полета вокруг земного шара. В течение трех недель в марте 1999 г. все оборудование на борту воздушного шара питалось от 20 модулей, подвешенных под корзиной. Каждый модуль был наклонен так, чтобы давать равномерный ток во время движения и заряжать пять аккумуляторов для навигационных приборов, питать систему спутниковой связи, обеспечивать освещение и нагрев воды. Все модули отлично работали на протяжении всего путешествия.

Фотоэлементы с успехом применяются для электрификации деревень. В наше время два миллиарда людей во всем мире живут без электричества. Большая часть из них - в развивающихся странах, где 75% населения не имеют доступа к электроэнергии. Удаленные деревни часто не подключены к сети.





15





Опыт показывает, что фотоэлементы служат экономически выгодным источником электричества для основных нужд, таких как:

  • освещение;

  • водозабор;

  • средства связи;

  • медицинские учреждения;

  • местный бизнес.

Те, у кого нет доступа к электроэнергии из сети, часто пользуются ископаемыми видами топлива - керосином, дизельным топливом. С его использованием связан ряд проблем:

  • Импорт ископаемого топлива истощает запас конвертируемой валюты в стране.

  • Транспортировка топлива затрудняется отсутствием нормальной инфраструктуры.

  • Обслуживание и ремонт генератора проблематичен из-за нехватки запасных частей.

  • Генератор загрязняет окружающую среду выхлопами и создает сильный шум.

Электрическое освещение при помощи фотоэлементов более эффективно, чем керосиновые лампы, а установка фотоэлектрической системы обычно стоит дешевле, чем продление электросети. Более того, многие развивающиеся страны расположены в регионах с высоким уровнем солнечной радиации, то есть в изобилии располагают бесплатным источником энергии круглый год. Производство "солнечного электричества" просто и надежно, что доказывает опыт эксплуатации десятков тысяч фотоэлектрических систем во всем мире.

В ближайшие десятилетия значительная часть мирового населения познакомится с фотоэлектрическими системами. Благодаря им исчезнет традиционная необходимость сооружения крупных дорогостоящих электростанций и распределительных систем. По мере того, как стоимость фотоэлементов будет снижаться, а технология - совершенствоваться, откроется несколько потенциально огромных рынков фотоэлементов. К примеру, фотоэлементы, встроенные в стройматериалы, будут осуществлять вентиляцию и освещение домов. Потребительские товары - от ручного инструмента до автомобилей - выиграют в качестве от использования компонентов, содержащих фотоэлектрические компоненты.

16





Коммунальные предприятия также смогут находить все новые способы применения фотоэлементов для удовлетворения потребностей населения.Европейский Союз поставил своей целью удвоить долю возобновляемых источников энергии к 2010 г. Одним из важных компонентов является производство 1 млн фотоэлектрических систем (500000 встроенных в крыши зданий и экспорт 500000 сельских систем) общей установленной мощностью 1 ГВт. Фирма "BP Amoco" (один из мировых лидеров продаж нефтепродуктов) собирается использовать солнечную энергию на 200 своих новых станциях обслуживания в Британии, Австралии, Германии, Австрии, Швейцарии, Нидерландах, Японии, Португалии, Испании, Франции и США. Программа стоимостью 50 млн долларов включает в себя применение 400 солнечных панелей, общей мощностью 3,5 МВт и снижение выбросов углекислого газа на 3500 тонн ежегодно.

Благодаря этому проекту "BP Amoco" станет одним из крупнейших в мире потребителей солнечного электричества, а также одним из крупнейших производителей солнечных элементов и модулей. Солнечные панели будут вырабатывать больше электричества, чем нужно для освещения и водяных насосов, поэтому система будет подключена к сети. Днем излишек электроэнергии будет подаваться в сеть, а ночью из нее будет пополняться недостаток энергии. Мировой рынок фотоэлементов к 2010 году должен составить 1000 МВт, а к 2050 г. -- 5 млн МВт, если верить прогнозу президента компании "BP Solar".



ТЕХНОЛОГИЯ

Солнечные фотоэлектрические системы просты в обращении и не имеют движущихся механизмов, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. В основе действия фотоэлементов лежит физический принцип, при котором электрический ток возникает под воздействием света между двумя полупроводниками с различными электрическими свойствами, находящимися в контакте друг с другом. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль. Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный, а не переменный ток. Он используется во многих простых устройствах, питающихся от батарей.

17



Переменный же ток, напротив, меняет свое направление через регулярные промежутки времени. Именно этот тип электричества поставляют энергопроизводители, он используется для большинства современных приборов и электронных устройств. В простейших системах постоянный ток фотоэлектрических модулей используется напрямую. Там же, где нужен переменный ток, к системе необходимо добавить инвертор, который преобразует постоянный ток в переменный

ФОТОЭЛЕМЕНТЫ

Современное производство фотоэлементов практически полностью основано на кремнии. Около 80% всех модулей производится с использованием поли- или монокристаллического кремния, а остальные 20% используют аморфный кремний. Кристаллические фотоэлементы - наиболее распространенные, обычно они имеют синий цвет с отблеском. Аморфные, или некристаллические - гладкие на вид и меняют цвет в зависимости от угла зрения. Монокристаллический кремний имеет наилучшую эффективность (около 14%), но он дороже, чем поликристаллический, эффективность которого в среднем составляет 11%. Аморфный кремний широко применяется в небольших приборах, таких как часы и калькуляторы, но его эффективность и долгосрочная стабильность значительно ниже, поэтому он редко применяется в силовых установках.

В опытной разработке находятся несколько типов альтернативных тонкопленочных фотоэлементов, которые в будущем могут завоевать рынок. Наиболее отлаженными из исследуемых в настоящее время тонкопленочных систем являются фотоэлементы из следующих материалов:

  • аморфный кремний (a-Si: H),

  • теллурид/сульфид кадмия (CTS),

  • медно-индиевый или медно-галлиевый диселенид (CIS or CIGS), тонкопленочный кристаллический кремний (c-Si film),

  • нанокристаллические сенсибилизированные красителем электрохимические фотоэлементы (nc-dye).

Фотоэлемент представляет собой "сэндвич" из кремния - второго по распространенности на Земле вещества. Девяносто девять процентов современных солнечных элементов изготавливают из кремния (Si), а остальные построены на том же принципе, что и кремниевые солнечные элементы. На один слой кремния наносится определенное вещество, благодаря которому образуется избыток электронов. Получается отрицательно заряженный ("N") слой.

18



На другом слое создается недостаток электронов, он становится положительно заряженным ("P"). Собранные вместе с проводниками, эти две поверхности образуют светочувствительный электронно-дырочный переход. Он называется полупроводником, так как, в отличие от электропровода, проводит ток только в одном направлении - от отрицательного к положительному. При воздействии солнца или другого интенсивного источника света возникает постоянный ток напряжением примерно в 0,5 Вольт. Сила тока (ампер) пропорциональна световой энергии (количеству фотонов). В любой фотоэлектрической системе напряжение почти постоянно, а ток пропорционален размеру фотоэлементов и интенсивности света.Фотоэлементы производятся из сверхчистого кремния, смешанного в точной пропорции с некоторыми другими веществами. Сверхчистая кремниевая подложка, из которой делают фотоэлементы, стоит очень дорого. Количества сверхчистого кремния, необходимого для изготовления одного фотоэлектрического модуля мощностью 50 Вт, было бы достаточно для интегральных схем примерно двух тысяч компьютеров. Кроме того, в фотоэлементах присутствуют алюминий, стекло и пластмасса - недорогие и многократно используемые материалы. «1"

ПРЕИМУЩЕСТВА

1Надёжность
Фотоэлементы разрабатывались для использования в космосе, где ремонт слишком дорог, либо вообще невозможен. До сих пор фотоэлементы являются источником питания практически для всех спутников на земной орбите, потому что они работают без поломок и почти не требуют технического обслуживания.

2.Низкие текущие расходы
Фотоэлементы работают на бесплатном топливе - солнечной энергии. Благодаря отсутствию движущихся частей, они не требуют особого ухода. Рентабельные фотоэлектрические системы являются идеальным источником электроэнергии для станций связи в горах, навигационных бакенов в море и других потребителей, расположенных вдали от линий электропередач.

3.Экологичность
Поскольку при использовании фотоэлектрических систем не сжигается топливо и не имеется движущихся частей, они являются бесшумными и чистыми. Эта их особенность чрезвычайно полезна там, где единственной альтернативой для получения света и электропитания являются дизель-генераторы и керосиновые лампы.

19





4.Модульность
Фотоэлектрическую систему можно довести до любого размера. Владелец такой системы может увеличить либо уменьшить ее, если изменится его потребность в электроэнергии. По мере возрастания энергопотребления и финансовых возможностей, домовладелец может каждые несколько лет добавлять модули. Фермеры могут обеспечивать скот питьевой водой при помощи передвижных насосных систем.

5.Низкие затраты на строительство
Размещают фотоэлектрические системы обычно близко к потребителю, а значит, линии электропередачи не нужно тянуть на дальние расстояния, как в случае подключения к линиям электропередач. Вдобавок, не нужен понижающий трансформатор. Меньше проводов означает низкие затраты и более короткий период установки. «1»

II. Практическая часть

1.Исследование зависимости падающей солнечной энергии на единицу площади за единицу времени от физических параметров.


  • От угла падения при пассивном и активном использовании.


Угол наклона батареи

Показания силы тока

1

30

2,3мА

2

45

2,8мА

3

60

3,3мА

4

90

28,2мА

20



Для проверки этого предположения мы использовали миллиамперметр и солнечную батарею. Устанавливая солнечную батарею под различными углами к источнику света мы выявили, что для максимального поглощения солнечной энергии необходимо располагать поглощающие поверхности перпендикулярно солнечным лучам.

  • От рода вещества

Для проверки этого явления мы положили термометр под лист белой бумаги или ткани и наблюдали в течении определенного времени. Темные тела нагреваются сильнее ,чем белые. А значит темные тела больше поглощают солнечной энергии , чем белые. Аналогичный опыт можно провести с помощью жидкого теплоприёмника соединенного с манометром. (приложение 16)

  • От площади поверхности

Для проверки этой зависимости мы закрывали часть солнечной батареи, показания миллиамперметра сразу уменьшались.

  • От мощности солнечного излучения


Для этого мы использовали миллиамперметр и две лампочки разных по мощности, при использовании лампочки с маленькой мощностью показания миллиамперметра были небольшими, а при использовании более мощной лампы показания миллиамперметра сразу увеличились.


Вывод: Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда фактов:

  • широты.

  • местного климата.

  • сезона года.

  • угла наклона поверхности по отношению к Солнцу.

  • рода вещества.

  • площади поглощающей поверхности.

  • мощности солнечного излучения.




21





2.Анализ статистических данных.


Используя статистические данные метеостанции некоторых городов нашей страны составили сравнительную таблицу в которой рассмотрели физические характеристики влияющие возможность использования солнечной энергетики.

Для этоговоспользуемся таблицей годовой инсоляции одного квадратного метра горизонтальной площадки в разных городах России в мегаваттах .

Мурманск

Якутск

Москва

Новосибирск

Хабаровск

Сочи

Нью-Йорк

Берлин

Лондон

Улан-Уде

Абакан

Средняя дневная сумма солнечной радиации, кВтч/м²[1]

2,19

2,96

2,72

2,91

3.62

4,00

3,83

2,74

2,73

3,47

3,49

Средняя дневная сумма солнечной радиации в декабре, кВтч/м²[1]

0

0,16

0,33

О,62

1,29

1,25

1,68

0,6

0,6

0,97

1,1

Средняя дневная сумма солнечной радиации в июне, кВтч/м²[1]

5,14

6,19

5,56

5,48

5,94

6,75

5,84

4,84

4,84

5,72

6,3

Мы видим ,что средняя дневная солнечная радиация наибольшая на территории г. Сочи и г. Абакана.

22





Из усредненных данных поступления солнечной энергии

на 1 квадратный метр в день на территории России.


более 5 кВт.час

от 4 до 4,5 кВт. час

2,5 до 3 кВт. час

От 3 до 4 кВт. час

По южной границе России от Байкала до Владивостока, в районе Якутска, на юге Республики Тыва и Республики Бурятия, как это не странно, за Полярным Кругом в восточной части Северной Земли.

Краснодарский край, Северный Кавказ, Ростовская область, южная часть Поволжья, южные районы Новосибирской, Иркутской областей, Бурятия, Тыва, Хакассия Приморский и Хабаровский край, Амурская область, остров Сахалин, обширные территории от Красноярского края до Магадана, Северная Земля, северо-восток Ямало-Ненецкого АО.

По западной дуге - Нижний Новгород, Москва, Санкт-Петербург, Салехард, восточная часть Чукотки и Камчатка.

Остальная территория страны.



Мы можем сделать вывод что на территории Хакассии на 1 квадратный метр за день поступает от 4до 4,5кВт.час солнечной энергии. «5»

23




3.Ведение дневника наблюдения.

hello_html_2d7bfbbe.png

Дневник наблюдений мы вели в течении 1года, с марта по февраль месяц, образец ведения приведен выше, для трёх месяцев.(место наблюдения г. Черногорск).

Месяц

март

апрель

май

июнь

июль

август

сентябрь

октябрь

ноябрь

декабрь

январь

февраль

Количество солнечных дней

8

3

2

10

10

11

14

9

3

16

20

14

Просмотрев данные мы пришли к выводу что: Погода в республике преобладает ясная, малооблачная. Суммарная величина солнечной радиации в степной зоне республики заметно выше, чем на этих же широтах в районах России, расположенных западнее. Так солнечных дней в Республике Хакасия больше, чем, к примеру, в Сочи. В абаканской степи продолжительность солнечного сияния составляет 2030 часов в год. Таким образом, можно утверждать, что использование энергии солнца на территории Хакасии в качестве альтернативной является целесообразным.





24



III. Заключение


Экспериментально установил:

  • способность поверхностей поглощать солнечную энергию зависит от угла падения солнечных лучей, а следовательно от географической широты и времени суток;

  • от интенсивности солнечного излучения, а значит от сезона года;


Используя результаты статистических данных и дневник наблюдений пришли к выводу:

  • территория республики Хакассии пригодна для эффективной работы установок, использующих солнечную энергию.

Планирование правительства республики Хакассия по энергосбережению предусматривает использование солнечной энергии:

  • для горячего водоснабжения сезонных потребителей типа спортивно-оздоровительных сооружений, баз отдыха, дачных посёлков;

  • для обогрева открытых и закрытых плавательных бассейнов, спортивных сооружений, душевых;

Солнечную радиацию с помощью гелиотехнических средств можно использовать:

  • для нагрева воды и воздуха;

  • просушивания сельскохозяйственных продуктов, сена,  лесоматериалов ;

Основная проблема в использовании солнечной энергии для отопления индивидуальных домов в нашей стране – отсутствие массового производства солнечных коллекторов, аккумуляторов солнечной энергии и другого оборудования.

Расширение масштабов применения солнечных установок не только даст значительную экономию энергоресурсов и повышение уровня жизни, но и позволит смягчить экологическую ситуацию.


25



Список литературы

1.Андреев В. Фотоэлектрические преобразования солнечной энергии.-

Соросовский образовательный журнал, 1996, №7.

2.Семенов А. Солнечный дом.- Наука и жизнь, 1985, №12.

3.В.Володин, П.Хазановский- «Энергия, век двадцать первый.»

4.А.Голдин «Океаны энергии». Л.С.Юдасин «Санкт-петербургские ведомости»

5.All RIGHTS Reserved 2011 http://www.ecorostov.ru/





























26

Конкурсная работа по физике «Изучение влияния физических параметров на использование солнечной энергии на территории Хакасии»
  • Физика
Описание:

 Уже древнейшие люди думали, что вся жизнь на Земле порождена и неразрывно связана с Солнцем. Человек понимал,  насколько комфортнее жить в солнечное время суток, с продолжительностью светового дня была связана активная часть жизни человека. От солнца он непосредственно получал свет и тепло. В религиях самых разных населяющих Землю народов, одним из самых главных богов всегда был бог Солнца, дарующий животворящее тепло всему сущему. «1»(приложение.1)

 

  Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество -энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства.

Автор Тартачакова Татьяна Николаевна
Дата добавления 30.12.2014
Раздел Физика
Подраздел
Просмотров 550
Номер материала 18170
Скачать свидетельство о публикации

Оставьте свой комментарий:

Введите символы, которые изображены на картинке:

Получить новый код
* Обязательные для заполнения.


Комментарии:

↓ Показать еще коментарии ↓