Главная / Информатика / Экзаменационные вопросы по информатике и ИКТ 8 класс

Экзаменационные вопросы по информатике и ИКТ 8 класс

  1. Понятие информации. Информация в природе, обществе, технике.

  2. Количество информации. Алфавитный подход. Задача на определение количества бит, необходимого для кодирования. Подсчет кол-ва информации.

  3. Кодирование текстовой информации.

  4. Виды и свойства информации.

  5. Единицы измерения количества информации.

  6. Устройство компьютера.

  7. Устройства ввода.

  8. Устройства вывода информации.

  9. Накопители информации.

  10. Программное обеспечение компьютера

  11. Графический интерфейс операционных систем и приложений.

  12. Компьютерные вирусы и антивирусные программы

  13. Основные функции и состав операционной системы.

  14. Глобальная компьютерная сеть Интернет.

  15. Локальные компьютерные сети.

  16. Информационные ресурсы Интернета.

  17. Поиск информации в Интернете.

  18. Общение в Интернете.

  19. Электронная почта.



1. Понятие информации. Информация в природе, обществе, технике.

Информатика – это наука, изучающая совокупность методов и средств сбора, хранения, передачи и обработки информации. Само слово «информация» происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление. Понятие «информация» является базовым в курсе информатики, невозможно дать его определение через другие, более «простые» понятия.

В геометрии, например, невозможно выразить содержание базовых понятий «точка», «луч», «плоскость» через более простые понятия. Информация относится к фундаментальным, неопределяемым понятиям науки информатика.

В различных отраслях человеческой деятельности «информация» понимается по-разному:

  • в быту информацией называют любые данные, сведения, знания, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

  1. в философии – отраженное многообразие, возникающее в результате взаимодействии объектов;

  2. в теории информации под информацией понимают сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний;

  3. в информатике информацию можно рассматривать как отражение предметного мира с помощью знаков и символов.

  4. математика включает в это понятие те сведения, которые человек не получал, а сам создал с помощью умозаключений.

  5. биология относит к информации те данные, которые хранит в себе человек с момента рождения до смерти (генетический код).

  6. в кибернетике понятие «информация» связано с процессами управления в сложных системах.

Так что же такое информация? Синонимами слова «информация» являются следующие слова: "знания", "сведения", "новости" и др.

Знания, сведения можно разделить на две группы.

Декларативные знания (декларация — это утверждение, сообщение) можно начать со слов "Я знаю, что...". Например:

  • Я знаю, что планета Земля  — шар;

  • Я знаю, что город Санкт-Петербург назывался Ленинградом;

  • Я знаю, что 2 х 2 = 4.

Вторая группа знаний может начинаться словами "Я знаю, как...", это процедурные знания. Например:

  • Я знаю, как включать компьютер;

  • Я знаю, как дрессировать собаку.

Но любые ли знания, сведения нужны человеку? Сообщения, которые несут новые знания человеку, называются информативными.

Информация может существовать в виде:

  • текстов, рисунков, чертежей, фотографий;

  • световых или звуковых сигналов;

  • радиоволн;

  • электрических и нервных импульсов;

  • магнитных записей;

  • жестов и мимики;

  • запахов и вкусовых ощущений;

  • хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т.д.

Роль информации в живой природе и в жизни людей

Нормальное функционирование живых организмов невозможно без получения и использования информации об окружающей среде. Целесообразное поведение живых организмов строится на основе получения информационных сигналов разной физической или химической природы. Это звук, свет, запах и др.

Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию о температуре и химическом составе среды для выбора наиболее благоприятных условий существования.

Любой живой организм, в том числе человек, является носителем генетической информации, которая хранится в каждой клетке организма и передается по наследству.

Человек также существует в «море» информации, он постоянно получает информацию из окружающего мира с помощью органов чувств, хранит ее в своей памяти, анализирует с помощью мышления и обменивается информацией с другими людьми.

2. Количество информации. Алфавитный подход. Задача на определение количества бит, необходимого для кодирования. Подсчет количества информации.

Содержательный подход к измерению информации рассматривает информацию с точки зрения человека, как уменьшение неопределенности наших знаний.

Однако любое техническое устройство не воспринимает содержание информации. Поэтому в вычислительной технике используется другой подход к определению количества информации. Он называется алфавитным подходом.

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Проще всего разобраться в этом на примере текста, написанного на каком-нибудь языке. Для нас удобнее, чтобы это был русский язык.

Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.

Алфавит - множество символов, используемых при записи текста.

Мощность (размер) алфавита - полное количество символов в алфавите.

Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.

Представьте себе, что текст к вам поступает последовательно, по одному знаку, словно бумажная ленточка, выползающая из телеграфного аппарата. Предположим, что каждый появляющийся на ленте символ с одинаковой вероятностью может быть любым символом алфавита. В действительности это не совсем так, но для упрощения примем такое предположение. В каждой очередной позиции текста может появиться любой из N символов. Тогда, согласно известной нам формуле N = 2I (см. содержательный подход) каждый такой символ несет I бит информации, которое можно определить из решения уравнения: 2I = 54. Получаем: I = 5.755 бит - такое количество информации несет один символ в русском тексте.

Чтобы найти количество информации во всем тексте, нужно посчитать число символов в нем и умножить на I.

Посчитаем количество информации на одной странице книги. Пусть страница содержит 50 строк. В каждой строке — 60 символов. Значит, на странице умещается 50x60=3000 знаков. Тогда объем информации будет равен: 5,755 х 3000 = 17265 бит.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации.

Применение алфавитного подхода удобно, прежде всего, при использовании технических средств работы с информацией. В этом случае теряют смысл понятия «новые - старые», «понятные - непонятные» сведения.

Алфавитный подход является объективным способом измерения информации в отличие от субъективного содержательного подхода.

Удобнее всего измерять информацию, когда размер алфавита N равен целой степени двойки. Например, если N=16, то каждый символ несет 4 бита информации потому, что 24 = 16. А если N =32, то один символ «весит» 5 бит.

Ограничения на максимальный размер алфавита теоретически не существует. Однако есть алфавит, который можно назвать достаточным. С ним мы встречались при рассмотрении темы "Кодирование текствовой информации". Это алфавит мощностью 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания....

Поскольку 256 = 28, то один символ этого алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название - байт.

1 байт = 8 бит.

Для измерения больших объемов информации используются следующие единицы:

  • 1 Кб (один килобайт)= 1024 байт

  • 1 Мб (один мегабайт)= 1024 Кб

  • 1 Гб (один гигабайт)= 1024 Мб

  • 1Тбайт (один терабайт)=1024Гбайт

  • 1Пбайт (один петабайт)=1024Тбайт

  • 1Эбайт (один экзабайт)=1024Пбайт

  • 1Збайт (один зетабайт)=1024Эбайт

  • 1Йбайт (один йотабайт)=1024Збайт.

Задача 1.

Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Решение.

20I = 64, I = 6 бит - количество информации, которое несет каждый символ, 20 • 6 = 120 бит = 15 байт.

Задача 2.

Одно племя имеет 32-символьный алфавит, а второе племя - 64-символьный алфавит. Вожди племен обменялись письмами. Письмо первого племени содержало 80 символов, а письмо второго племени -70 символов. Сравните объем информации, содержащийся в письмах.

Решение.

Первое племя: 2I = 32, I = 5 бит - количество информации, которое несет каждый символ, 5 • 80 = 400 бит.
Второе племя: 2I = 64, I = 6 бит - количество информации, которое несет каждый символ, 6 • 70 = 420 бит.
Значит, письмо второго племени содержит больше информации.

Задача 3.

Сколько килобайт составляет сообщение, содержащее 12288 бит?

Решение.

1 килобайт=1024 байт, 1 байт = 8 бит.
12288/8/1024 = 1,5КБ.

Задача 4.

Можно ли уместить на одну дискету книгу, имеющую 432 страницы, причем на каждой странице этой книги 46 строк, а в каждой строке 62 символа?

Решение.

46 • 62 • 432 =1 232 064 символов в книге = 1 232 064 байт
1232 064 байт =1,17 Мб.
Емкость дискеты 1,44 МБ, значит, книга может поместиться на одну дискету.

3. Кодирование текстовой информации. Задача на подсчет количества информации в текстовом сообщении. Изменение количества информации при сохранении текста в разных кодировках.

Если каждому символу алфавита сопоставить определенное целое число (например, порядковый номер), то с помощью двоичного кода можно кодировать и текстовую информацию. Для хранения двоичного кода одного символа выделен 1 байт = 8 бит.

Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно.

Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов.

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, графические символы и т.д.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111.

Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.

Важно, что присвоение символу конкретного кода - это вопрос соглашения, которое фиксируется в кодовой таблице.

Кодирование текстовой информации с помощью байтов опирается на несколько различных стандартов, но первоосновой для всех стал стандарт ASCII (American Standart Code for Information Interchange), разработанный в США в Национальном институте ANSI (American National Standarts Institute).

В системе ASCII закреплены две таблицы кодирования - базовая и расширенная.

Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 33 кода (с 0 до 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и т. д.).

Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Коды с 128 по 255 являются национальными, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.

С распространением современных информационных технологий в мире возникла необходимость кодировать символы алфавитов других языков: японского, корейского, арабского, хинди, а также других специальных символов.

На смену старой системе пришла новая универсальная – UNICODE, в которой один символ кодируется не одним, а двумя байтами.

В настоящее время существует много различных кодовых таблиц (DOS, ISO, WINDOWS, KOI8-R, KOI8-U, UNICODE и др.), поэтому тексты, созданные в одной кодировке, могут не правильно отображаться в другой.

4. Виды и свойства информации.

По способу передачи:

  • дискретная;

  • аналоговая.

По форме представления:

  • текстовая;

  • символьная,

  • графическая;

  • музыкальная и др.

По способу восприятия:

  • звуковая;

  • зрительная;

  • обонятельная;

  • осязательная;

  • вкусовая.

По степени значимости:

  • личная;

  • специальная;

  • общественная.

Свойства информации

  • понятность;

  • полнота;

  • точность;

  • достоверность;

  • актуальность;

  • полезность.

Человек - существо социальное, для общения с другими людьми он должен обмениваться с ними информацией, причем обмен информацией всегда производится на определенном языке — русском, английском и так далее. Участники дискуссии должны владеть тем языком, на котором ведется общение, тогда информация будет понятной всем участникам обмена информацией.

 Информация должна быть полезной, тогда дискуссия приобретает практическую ценность. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете.

Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Такая информация должна быть достоверной и актуальной. Недостоверная информация вводит членов общества в заблуждение и может быть причиной возникновения социальных потрясений. Неактуальная информация бесполезна и поэтому никто, кроме историков, не читает прошлогодних газет.

Для того чтобы человек мог правильно ориентироваться в окружающем мире, информация должна быть полной и точной. Задача получения полной и точной информации стоит перед наукой. Овладение научными знаниями в процессе обучения позволяют человеку получить полную и точную информацию о природе, обществе и технике.

5. Единицы измерения количества информации.

Если рассматривать информацию с субъективной точки зрения, то информация – это знания человека. Отсюда следует вывод, что сообщение информативно (содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра – информативное сообщение, а сообщение о вчерашней погоде неинформативно: нам это уже известно.

Для измерения информации нужна единица измерения, тогда мы сможем определять, в каком сообщении информации больше, в каком меньше. Единица измерения информации называется «бит». Её определение звучит так:

Сообщение, уменьшающее неопределенность знаний в два раза, несет 1 бит информации. Таким образом, основная единица измерения информации— бит.

1 байт = 8 бит.

Для измерения больших объемов информации используются следующие единицы:

  • 1 Кб (один килобайт)= 1024 байт

  • 1 Мб (один мегабайт)= 1024 Кб

  • 1 Гб (один гигабайт)= 1024 Мб

  • 1Тбайт (один терабайт)=1024Гбайт

  • 1Пбайт (один петабайт)=1024Тбайт

  • 1Эбайт (один экзабайт)=1024Пбайт

  • 1Збайт (один зетабайт)=1024Эбайт

  • 1Йбайт (один йотабайт)=1024Збайт.

6. Устройство компьютера.

Устройство компьютера с точки зрения пользователей - умение обращаться с компьютером как с инструментом для обработки информации. Компьютер должен воспринимать и распознавать вводимую информацию, запоминать ее, совершать над ней различные действия и выводить результаты своей работы, то есть выполнять основные этапы обработки информации: ввод, хранение, преобразование, вывод.

Для решения всех этих задач необходимы технические устройства и программы.

Совокупность технических устройств называют аппаратным обеспечением Аппаратное обеспечение персонального компьютера — система взаимосвязанных технических устройств, выполняющих ввод, хранение, обработку и вывод информации.

Основная компоновка частей компьютера и связь между ними называется архитектурой. При описании архитектуры компьютера определяется состав входящих в него компонент, принципы их взаимодействия, а также их функции и характеристики.

Практически все универсальные ЭВМ отражают классическую неймановскую архитектуру.

Эта архитектура во многом характерна как для микро ЭВМ, так и для мини ЭВМ и ЭВМ общего назначения.

Рассмотрим устройства подробнее.

Любая вычислительная машина имеет в своем составе запоминающее устройство (ЗУ), устройства ввода-вывода (УВВ) и процессор, состоящий из арифметико-логического устройства (АЛУ) и устройства управления (УУ).

Организация вычислительного процесса на ЭВМ включает следующие этапы:

  • подготовка входной информации; ввод программы;

  • ввод исходных данных;

  • выполнение программы;

  • вывод результатов.

Подготовка входной информации. ЭВМ располагает возможностью ввода программ и исходных данных непосредственно пользователем. Обычно входная информация, написанная от руки на бумаге, переносится на машинный носитель - магнитную ленту, магнитный диск, дискету, оптический диск и др.

Ввод программ и исходных данных. В результате этих двух, обычно последовательно выполняемых, этапов входная информация, записанная на соответствующем носителе, попадает в память ЭВМ. Наиболее распространенными в персональных компьютерах устройствами ввода-вывода являются клавиатура, накопитель на гибких магнитных дисках (НГМД) и устройство чтения информации с компакт-дисков (CD-ROM).

Выполнение программы. Основным ресурсом вычислительного процесса ЭВМ является центральное устройство обработки информации - процессор. Он управляет всеми остальными устройствами и реализует этап выполнения программ. Если остальные устройства (ввода - вывода), как правило, делаются унифицированными, т.е. предназначенными для использования в различных ЭВМ, то процессоры представляют основную отличительную часть ЭВМ. Это значит, что тип ЭВМ определяется типом процессора.

Вывод результата. Результаты выполнения программ (это обычно предусматривается самой же программой) могут быть выведены на экран дисплея, запомнены на магнитном носителе (например, на НГМД) или напечатаны на бумажном носителе с помощью специального устройства печати (принтера). Эти устройства рассматриваются как ресурсы вывода, т.е. последнего этапа вычислительного процесса.

Память - устройство для хранения информации в виде данных и программ. Память делится прежде всего на внутреннюю (расположенную на системной плате) и внешнюю (размещенную на разнообразных внешних носителях информации).

Порт — обычно соединение (физическое или логическое), через которое принимаются и отправляются данные в компьютерах. Наиболее часто портом называют:

Аппаратный порт — специализированный разъём в компьютере, предназначенный для подключения оборудования определённого типа. См.: LPT-порт, последовательный порт, USB-порт, Игровой порт.

Порт ввода-вывода — используется в микропроцессорах (например, Intel) и микроконтроллерах (например, PIC, AVR) при обмене данными с аппаратным обеспечением. Порт ввода-вывода сопоставляется с тем или иным устройством и позволяет программам обращаться к нему для обмена данными.

Сетевой порт — параметр протоколов TCP и UDP.

Port — термин, используемый пользователями FreeBSD и OpenBSD для обозначения пакета.

Порт - результат адаптации (портирования) некоторой программы или её части, с тем чтобы она работала в другой среде.

Порты бывают входными и выходными, универсальными (ввод - вывод), они служат для обеспечения обмена информацией ПК с внешними, не очень быстрыми устройствами. Информация, поступающая через порт, направляется в МП, а потом в ОП. Выделяют виды портов:

  • последовательный — обеспечивает побитный обмен информацией, обычно к такому порту подключают модем;

  • параллельный — обеспечивает побайтный обмен информацией, к такому порту подключают принтер.

7.Устройства ввода.

Органы чувств человека способны воспринимать информацию в разнообразных формах, например текст в учебнике, сообщение по телефону, запах газа на кухне, вкус горького перца и пр. Эта информация может быть преобразована в другие формы, например в мысли и эмоции. Результаты обработки информации человеком отражаются в его решениях и действиях.

Компьютеру, как и человеку, необходимы свои «глаза и уши», с помощью которых он мог бы воспринимать информацию извне. В настоящее время имеются разнообразные устройства, выполняющие эти функции в составе компьютера. Они называют­ся устройствами ввода, так как обеспечивают ввод в компьютер данных в различных формах: чисел, текстов, изображений, звуков. Устройства ввода преобразуют эту информацию в цифровую форму для последующей обработки и хранения в компьютере. Многообразие устройств ввода определяется разнообразием форм представления информации, которая может быть обработана с помощью компьютера.

Устройства ввода — аппаратные средства для преобразования информации из формы, понятной человеку, в форму, воспринимаемую компьютером.

Аппаратное обеспечение компьютера по вводу данных включает само устройство ввода, управляющий блок, называемый контроллером (адаптером), специальные разъемы и электрические кабели. Однако для достижения правильной работы как устройства ввода, так и устройства вывода одного лишь правильного аппаратного подключения недостаточно. Требуется загрузить в оперативную память специальную управляющую программу, называемую драйвером. Причем для каждого устройства нужен свой драйвер. В комплект поставки любого устройства ввода должна входить дискета с соответствующим драйвером.

Драйвер устройства — программа, управляющая работой конкретного устройства ввода/вывода информации.

Устройства ввода по способу ввода информации можно подразделить на два основных класса:

  • с клавиатурным вводом, при котором осуществляется ручной ввод с клавиатуры;

  • с прямым вводом, при котором данные читаются непосредственно компьютерными устройствами.

В свою очередь, среди устройств с прямым вводом данных выделяются подклассы устройств: манипуляторы, сенсорные устройства, сканеры, устройства распознавания речи. Рассмотрим основные характеристики этих классов технических средств.

Стандартным устройством для ввода информации в компьютер является клавиатура. С ее помощью вы можете вводить числовую и текстовую информацию, а также различные команды и данные.

Обычно вводимая с клавиатуры информация в целях контроля отображается на экране монитора. Место ввода информации на экране указывается специальным значком, который называется курсором. Вид курсора может быть различным в зависимости от используемой программы и режима работы. Это может быть мигающая черточка, прямоугольник и пр.

Как правило, используется 101-103-клавишная клавиатура американского стандарта. Кроме клавишной, клавиатура бывает мембранной и сенсорной. На клавиши алфавитно-цифрового поля дополнительно наносится разметка букв национального алфавита. Если на компьютере установлена операционная система, не настроенная на работу в режиме национального алфавита (не-локализованная версия), то необходима дополнительная специальная программа — драйвер клавиатуры. В локализованных версиях Windows драйвер клавиатуры входит в комплект поставки.

На современном компьютерном рынке большой популярностью пользуются эргономические клавиатуры и специальные прокладки для запястий, обеспечивающие наиболее комфортные условия работы. Различные модели эргономических клавиатур имеют:

  • форму буквы V и разъединение посередине, угол между частями можно плавно изменять в зависимости от особенностей строения кистей рук человека;

  • большие опоры для ладоней, поддерживающие кисти в прямом положении;

  • мембранную бесшумную замену клавишам;

  • сенсорную панель, движение пальцев по которой заменяет действие мыши.

Работа на персональном компьютере невозможна без освоения клавиатуры.

Широкое использование графического интерфейса привело к появлению манипулятора «мышь».

По способу считывания информации их можно классифицировать на:

  • механические;

  • оптико-механические;

  • оптические.

На нижней поверхности механической мыши имеется шарик. Перемещение мыши по ровной поверхности (столу, коврику) приводит к вращению шарика. При этом он взаимодействует с датчиками внутри корпуса мыши, в результате чего вырабатывается сигнал, который заставляет перемещаться указатель мыши на экране монитора.

Оптическая мышь имеет красный светодиод для подсветки и миниатюрную видеокамеру, которая делает снимки поверхности под ней (от 1500 до 6000 кадров в секунду). Специальный процессор сравнивает два последовательных кадра, чтобы вычислить величину и направление смещения.

На верхней поверхности мыши расположены 2 или 3 кнопки. Нажатие на ту или иную кнопку («щелчок») мыши компьютер воспринимает как указание на выполнение некоторого заданного действия. Использование мыши позволяет более быстро и удобно управлять работой различных программ. Качество мыши определяется ее разрешающей способностью, которая измеряется числом точек на дюйм — dpi (dot per inch). Этой характеристикой обусловливается, насколько точно указатель мыши будет передвигаться по экрану. Для мышей среднего класса разрешение составляет 400-800 dpi.

Разные типы мыши также отличаются друг от друга способом соединения с компьютером (проводные — присоединяемые с помощью кабеля; беспроводные, или «бесхвостые» мыши — соединение с компьютером обеспечивается инфракрасным сигналом, который воспринимается специальным портом).

Дизайн мыши предполагает различные формы конструкций. Наиболее популярными становятся эргономические мыши, которые имеют обтекаемую поверхность и обеспечивают естественность размещения кисти руки на ее поверхности. Установка колесика между двумя традиционными кнопками мыши обеспечивает перемещение по документу без использования экранных полос прокрутки. Беспроводная «летучая» мышь работает в любом месте: на столе она работает как обычная мышь; если ее поднять и нажать кнопку на основании, то такую мышь можно использовать в воздухе.

Трекбол и тачпад

Трекбол, или шаровой манипулятор, напоминает перевернутую мышь. Его не надо, как мышь, двигать по столу. В трекболе шарик вращается рукой и вращение также преобразуется в перемещение указателя по экрану. Он очень удобен в тех случаях, когда мало места, так как не требует коврика и пространства для перемещения манипулятора по столу. Это свойство определило широкое применение трекбола в портативных компьютерах. Тачпад служит для перемещения курсора в зависимости от движений пальца пользователя и используется для замены мыши в ноутбуках. Для перемещения курсора на весь экран достаточно небольшого перемещения пальца по поверхности тачпада.

Джойстик

Джойстик, или ручка управления, был разработан специально для игр. Так же как мышь и трекбол, он позволяет перемещать курсор или графический объект по экрану монитора. Джойстик представляет собой рукоятку, отклоняющуюся во все стороны, и несколько кнопок на небольшой панели — для выполнения простейших действий.

Джойстики имеют различное количество кнопок и число на­правлений перемещения курсора по экрану. С целью соблюдения эргономических требований ручка джойстика имеет форму, повторяющую рельеф кисти руки при обхвате ручки. Современный рынок джой­стиков очень разнообразен. Созданный для до­суга, он совершенствуется, и работа с ним все более приближается к естественным условиям имитируемой ситуации. Среди последних моде­лей наиболее удачен джойстик с силовой обратной связью на со­бытия, происходящие на экране. Например, если в ходе игры вы ведете машину по ухабистой дороге под вражескими пулями, то джойстик дрожит в руке и вы чувствуете, как пули попадают в капот автомобиля.

Сенсорные устройства ввода Сенсорный экран

Сенсорный, или тактильный, экран представляет собой поверх­ность, которая покрыта специальным слоем. Прикосновение к оп­ределенному месту экрана обеспечивает выбор задания, которое должно быть выполнено компьютером, или коман­ды в экранном меню. Так, например, во время про­ведения олимпиад сенсорные экраны помогают спортсменам, тренерам, корреспондентам быстро выбрать интересующую его информацию о резуль­татах соревнований, составе команд и т. п. указани­ем пальца в соответствующем меню.

Сенсорный экран позволяет также перемещать объекты. Он удобен в использовании, особенно когда необходим быстрый дос­туп к информации. Такие устройства ввода можно увидеть в бан­ковских компьютерах, аэропортах, а также в военной сфере и про­мышленности.

Световое перо

Световое перо похоже на обычный карандаш, на кончике кото­рого имеется специальное устройство — светочувствительный элемент. Соприкосновение пера с экраном замыкает фотоэлек­трическую цепь и определяет место ввода или коррекции данных. Если перемещать по экрану такое перо, можно рисовать или писать на экране, как на листе бумаги.

Световое перо используется для ввода информации в самых маленьких персональных компьютерах — в карманных микро­компьютерах. Оно также применяется в различных системах проектирования и дизайна.

Графический планшет, или дигитайзер

Графический планшет, или дигитайзер, используется для созда­ния либо копирования рисунков или фотографий. Он позволяет создавать рисунки так же, как на листе бумаги. Изображение преобразуется в цифровую форму, отсюда название устройства (от англ. digit — цифра). Условия создания изображения при­ближены к реальным, достаточно спе­циальным пером или пальцем сделать рисунок на специальной поверхности. Результат работы дигитайзера воспро­изводится на экране монитора и в слу­чае необходимости может быть распечатан на принтере. Диги­тайзерами обычно пользуются архитекторы, дизайнеры.

Устройства сканирования Сканер

Большое распространение в наше время прибрели устройства сканирования изображений, таких как тексты или рисунки. Термин «сканирование» происходит от английского глагола to scan, что означает «пристально всматриваться».

Сканер предназначен для ввода в компьютер графической или текстовой информации с листа бумаги, со страницы журнала или книги. Для работы сканера необходимо программное обес­печение, которое создает и сохраняет в памяти электронную ко­пию изображения. Все разнообразие подобных программ можно подразделить на два класса — для работы с графическим изобра­жением и для распознавания текста.

Сканеры различаются по следующим параметрам:

  • глубина распознавания цвета: черно-белые, с градацией се­рого, цветные;

  • оптическое разрешение, или точность сканирования, из­меряется в точках на дюйм (dpi) и определяет количест­во точек, которые сканер различает на каждом дюйме; стандартные разрешения — 200, 300, 600, 1200 точек на дюйм;

  • программное обеспечение, входящее в комплект поставки сканеров: обучаемые программы, которые имеют образцы почерков для распознания текста; интеллектуальные — сами обучаются;

  • конструкция: ручные, страничные (листовые) и планшет­ные.

К важным характеристикам сканера также относятся время сканирования и максимальный размер сканируемого документа.

Сканеры находят широкое применение в издательской дея­тельности, системах проектирования, анимации. Эти устройства незаменимы при создании презентаций, докладов, рекламных материалов высокого качества.

Устройства распознавания символов

К таким устройствам относятся, например, терминалы, установ­ленные в больших магазинах. Эти терминалы оснащены разно­образными устройствами считывания штрих-кодов — специаль­ных символов и меток для определения условий приобретения товара и его цены. Считанная информация преобразуется, выво­дится на экран или бумажный чек и по линиям связи передает­ся на более мощный компьютер для дальнейшей обработки.

Устройства распознавания речи

С помощью обычного микрофона речь человека непосредственно вводится в компьютер и преобразуется в цифровой код. Боль­шинство систем распознавания речи могут быть настроены на особенности человеческого голоса. Это реализуется путем сравне­ния сказанного слова с образцами, пред­варительно записанными в память ком­пьютера. Некоторые системы способны определять одинаковые слова, сказан­ные разными людьми. Однако список этих слов ограничен. Лучшие системы распознают до 30 тысяч слов и реагиру­ют на индивидуальные особенности го­лоса. Есть системы, которые не только распознают речь, но и осуществляют пе­ревод с одного языка на другой. Системы распознавания речи находят широкое применение в образовании, например при изучении иностранных языков. Функции распознавания и коррекции речи незаменимы для фор­мирования правильного произношения.

8. Устройства вывода информации.

Классификация устройств вывода

Введенная в компьютер информация преобразуется с помощью программ в некий конечный результат, который необходим че­ловеку. Однако в компьютере этот результат обработки хранится в двоичном коде и совершенно непонятен человеку. Для преоб­разования двоичных кодов в форму, понятную человеку, необхо­димы специальные аппаратные средства, которые получили на­звание устройств вывода.

Устройства вывода — аппаратные средства для преобразования компьютерного (машинного) представления информации в форму, понятную человеку.

Для нормальной работы устройства вывода, так же как и уст­ройства ввода, необходимы управляющий блок (контроллер, или адаптер), специальные разъемы и электрические кабели и обя­зательно — управляющая программа (драйвер). Только при вы­полнении этих условий устройство вывода обеспечивает необхо­димую человек у форму представления выводимых результатов в виде текста, изображения, звука и пр. Многообразие устройств вывода определяется различными физическими принципами, ко­торые заложены в основу их работы.

Среди устройств вывода можно выделить по форме представ­ления информации несколько классов (рисунок): монито­ры, принтеры, плоттеры, устройства звукового вывода.

Мониторы

Общая характеристика

Монитор предназначен для отображения символьной и графи­ческой информации. Мониторы могут быть выполнены на базе электронно-лучевых трубок или в виде жидкокристаллических панелей. У портативных ком­пьютеров мониторы выполнены в виде жидкокристаллических панелей. Компактные размеры мониторов на жидких кристал­лах, представляющих собой плоские экраны, а также отсут­ствие вредных факторов, влияющих на здоровье человека, дела­ют данный вид мониторов все более популярным и для стацио­нарных компьютеров.

Основными характеристиками мониторов, реализованных на базе электронно-лучевой трубки, являются: разрешающая спо­собность экрана, расстояние между точками на экране, длина диагонали экрана.

Разрешающая способность экрана

Любое изображение на экране представляется набором точек, ко­торые называются пикселями (от англ. Picture's ELement — эле­мент картины). Число точек по горизонтали и вертикали экрана определяет разрешающую способность монитора. Стандартный режим работы современного монитора поддерживает разрешение 800x600, 1024x768 точек и другие режимы. Чем выше раз­решающая способность монитора, тем качественнее изображе­ние.

В текстовом режиме на экран выводятся только известные компьютеру символы, а в графическом — любое изображение, состоящее из точек. Для представления любого символа в тек­стовом режиме используется фиксированное количество пиксе­лей, например 8x8 или 8x14.

Мониторы бывают черно-белые (монохромные) и цветные. Цветные изображения получаются путем смешивания трех базо­вых цветов: красного, зеленого, синего Базовые цвета создают­ся тремя электронными лучами, каждый из которых отвечает за свой цвет. Все многообразие оттенков объясняется суммирова­нием базовых цветов в различных пропорциях.

Расстояние между точками на экране

Четкость изображения на мониторе определяется расстоянием ме­жду точками на экране, или величиной шага («размером зерна»). Значение данного параметра колеблется от 0,22 до 0,43 мм. Чем меньше эта величина, тем качественнее изображение.

Длина диагонали экрана

Этот параметр измеряется в дюймах и колеблется в диапазоне от 9" до 41". Выбор размера монитора зависит от области исполь­зования персонального компьютера. Для учебных и бытовых це­лей наиболее популярными являются мониторы с диагональю 14 и 15 дюймов. Работа со специализированными графическими пакетами требует использования мониторов большей диагонали, например 17 дюймов. В системах автоматизированного проекти­рования, где необходимо одновременно отображать большой объ­ем графической информации, для эффективной работы желатель­но использование мониторов с диагональю в 21 дюйм и более.

Разрешающая способность экрана во многом определяется со­отношением длины диагонали и величины шага (таблица 20.1). Например, при размере диагонали 14 дюймов и величине шага 0,28 мм оптимальный режим работы монитора обеспечивается при разрешении 800 на 600 точек.

Видеокарта

Реально получаемые режимы работы монитора зависят от типа видеокарты, которая обеспечивает управление и взаимодействие монитора с персональным компьютером. Видеокарта, или видео­адаптер, устанавливается на системной плате в системном бло­ке компьютера и поставляется с набором программ-драйверов. Монитор, видеоадаптер и набор программ-драйверов образуют видеосистему персонального компьютера.

Для обеспечения возможности подключения к компьютеру телевизора или видеомагнитофона компьютер комплектуется видеоконвертором. TV-конвертор позволяет выводить компью­терное изображение на экран телевизора или производить за­пись на видеомагнитофон. PC-конверторы выполняют обратное преобразование, при котором изображение с экрана телевизора отображается на мониторе.

Все мониторы подлежат обязательной проверке на безопасность для здоровья человека. Поэтому при их покупке нужно требовать сертификат безопасности, подтверждающий качество работы купленного монитора и низкий уровень излучения (Low Radiation).

Принтеры Общая характеристика

Принтеры предназначены для вывода результатов на бумагу. При этом происходит преобразование машин­ного представления информации в символы (буквы, цифры, знаки). Любой символ выводится на печать в виде множества точек. Формирование изображения осуществляется головкой печатающего устройства. Печать каждой строки производится в двух направлениях: печа­тающая головка двигается слева направо и справа налево. Пере­ход к выводу следующей строки осуществляется с помощью спе­циального механизм а протягивания бумаги между валиками принтера. Функциональные возможности современных принте­ров позволяют выводить различный текст, рисунки, графики не только на бумагу, но и на специальную пленку, например для создания слайдов.

К одному системному блоку можно подключить от одного до трех принтеров любых типов.

По способу формирования выводимой информации принтеры делятся на:

  • последовательные, когда документ формируется символ за символом;

  • строчные, когда формируется сразу вся строка;

  • страничные, когда формируется изображение целой стра­ницы.

По количеству цветов, используемых при печати документа, различают принтеры черно-белые и цветные.

По способу печати принтеры бывают ударные и безударные.

По способу получения изображения на бумаге, способу нане­сения красящего материала (тонера) принтеры бывают: матрич­ные, струйные, лазерные, термические, литерные.

Рассмотрим основные типы принтеров.

Матричные принтеры

Матричные принтеры относятся к ударным печатающим устрой­ствам, так как изображение формируется с помощью комплекта иголок (матрицы), ударяю­щих по бумаге через крася­щую ленту, помещенную в специальный футляр — картридж. В результате на бумаге остается оттиск изо­бражения выводимого сим­вола. Управление переме­щением каждой иголки для получения требуемого изо­бражения производится с по­мощью электромагнита, расположенного в головке матричного принтера. Чем больше иголок в головке, тем выше качество пе­чати. Матричные принтеры бывают 9-, 18- и 24-игольчатые.

Струйные принтеры

Струйные принтеры относятся к безударным устройствам, так как головка печатающего устройства не касается бумаги. Благодаря этому их работа практически бесшумна.

Для получения изображения используют специальные черни­ла, а вместо печатающей головки установлен картридж, похожий на перевернутую чернильницу, в которой из отверстий (сопел) выбрасываются тонкие струи чернил. Мельчайшие капельки их отклоняются под действием управляющих электромагнитов и, достигнув бумаги, создают требуемое изображение. Количество сопел колеблется от 12 до 64. Чем больше сопел, тем выше качество печати. Струйные принтеры обеспечивают получение изобра­жения по качеству, близкому к типографскому, что определяет широкую сферу использования струйных принтеров для созда­ния различных документов.

Скорость печати струйных принтеров значительно выше, чем матричных. К сожалению, и стоимость печати струйными принте­рами также существенно выше. Работая со струйным принтером, нельзя забывать, что чернила при соприкосновении с водой имеют свойство растекаться. Поэтому использовать данный тип принте­ров можно только в сухих помещениях. По этой же причине в струйном принтере используется только высококачественная гладкая бумага.

Лазерные принтеры

В лазерных принтерах для формирования изображения исполь­зуется лазерный луч. С помощью системы линз тонкий луч лазе­ра формирует электронное изображе­ние на светочувствительном барабане. К заряженным участкам электронного изображения притягиваются частички порошка-красителя (тонера), который затем переносится на бумагу.

Лазерные принтеры обеспечивают высокое качество печати и значительную скорость вывода — от нескольких стра­ниц в минуту при цветной и до десятка с лишним страниц в ми­нуту при черно-белой печати. Эти свойства лазерного принтера оп­ределяют его использование в качестве сетевого принтера, обеспе­чивающего режимы коллективного доступа. Лазерные принтеры находят широкое применение в издательской деятельности.

Плоттеры

Плоттеры, иначе называемые графопостроителями, предназначе­ны для вывода графической информации, создания схем, слож­ных архитектурных чертежей, художественной и иллюстративной графики, карт, трехмерных изображе­ний. Плоттеры используются для произ­водства высококачественной цветной до­кументации и являются незаменимыми для художников, дизайнеров, оформите­лей, инженеров, проектировщиков. Размеры выходных документов на плоттере превышают разме­ры документов, которые можно создавать с помощью принтера. Максимальная длина печатаемого материала ограничена, как правило, длиной рулона бумаги, а не конструкцией плоттера.

Изображение на бумаге формируется с помощью печатающей головки. Точка за точкой изображение наносится на бумагу (кальку, пленку), отсюда и название графопостроителя — плот­тер (от англ. to plot — вычерчивать чертеж).

К основным характеристикам плоттеров относятся:

  • скорость вычерчивания изображения, измеряемая в миллиметрах в секунду;

  • скорость вывода, определяемая количеством условных лис­тов, распечатываемых в минуту;

  • разрешающая способность, измеряемая, аналогично принте­ру, в dpi (количество точек на дюйм).

По конструкции плоттеры делятся на планшетные и барабан­ные. В планшетных плоттерах бумага неподвижна, а печатаю­щая головка перемещается по двум направлениям. В барабан­ных по одной из координат передвигается головка, а по дру­гой — с помощью системы прижима движется бумага.

Устройства звукового вывода

Трудно представить себе современный компьютер молчаливым, без возможности услышать различные звуки — сигналы, музы­ку, человеческую речь. Для этого к компьютеру подсоединяют ко­лонки или наушники, которые преобразуют данные в двоичном представлении в звук.

Устройства голосового вывода при наличии соответствующих программ в компьютере могут воспроизводить звуки, подобные человеческой речи. Примеры использова­ния речевого вывода мы находим в совре­менных супермаркетах на выходном кон­троле для подтверждения покупки, в те­лефонных устройствах, в автомобильном оборудовании. Широкое распространение эти устройства находят также в образова­нии при обучении иностранным языкам.

9. Накопители информации.

Устройства внешней памяти весьма разнообразны. Предлагаемая классификация учитывает тип носителя, т.е. материального объекта, способного хранить информацию.

Накопители на магнитной ленте исторически появились раньше, чем накопители на магнитном диске. Бобинные накопители используются в суперЭВМ и mainframe. Ленточные накопители называются стримерами, они предназначены для создания резервных копий программ и документов, представляющих ценность. Запись может производиться на обычную видеокассету или на специальную кассету. Емкость такой кассеты до 1700 Мб, длина ленты 120 м, ширина 3.81 мм (2 - 4 дорожки). Скорость считывания информации-до 100 Кб/сек.

Диски относятся к носителям информации с прямым доступом, т.е. ПК может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно.

Магнитные диски (МД) — в качестве запоминающей среды используются магнитные материалы со специальными свойствами, позволяющими фиксировать два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры — 0 и 1. Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек. Каждая дорожка разбита на сектора (1 сектор = 512 б). Обмен между дисками и ОП происходит целым числом секторов. Кластер — минимальная единица размещения информации на диске, он может содержать один и более смежных секторов дорожки. При записи и чтении МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к выбранной для записи или чтения дорожке.

Данные на дисках хранятся в файлах — именованных областях внешней памяти, выделенных для хранения массива данных. Кластеры, выделяемые файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Вся информация о том, где именно записаны кусочки файла, хранится в таблице размещения файлов FAT (file allocation table). Для пакетов МД (это диски, установленные на одной оси) и для двусторонних дисков вводится понятие цилиндр - совокупность дорожек МД, находящихся на одинаковом расстоянии от центра.

На ГМД магнитный слой наносится на гибкую основу. Диаметр ГМД: 5,25" и 3,5". Емкость ГМД от 180 Кб до 2,88 Мб. Число дорожек на одной поверхности - 80. Скорость вращения от 3000 до 7200 об/мин.

Каждая новая дискета перед работой должна быть отформатирована, т.е. создана структура записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров, таблицы FAT. Дискеты нужно хранить аккуратно, беречь от пыли, механических повреждений, воздействия магнитных полей, растворителей. Это основной недостаток этого вида накопителей.

НЖМД или «винчестеры» изготовлены из сплавов алюминия или из керамики и покрыты ферролаком, вместе с блоком магнитных головок помещены в герметически закрытый корпус. Емкость накопителей за счет чрезвычайно плотной записи достигает нескольких гигабайт, быстродействие также выше, чем у съемных дисков (за счет увеличения скорости вращения, т.к. диск жестко закреплен на оси вращения). Первая модель появилась на фирме IBM в 1973 г. Она имела емкость 16 Кб и 30 дорожек/30 секторов, что случайно совпало с калибром популярного ружья 30'730" «винчестер».

НОД (накопители на оптических дисках) делятся на:

  • не перезаписываемые лазерно-оптические диски или компакт-диски (CD-ROM). Поставляются фирмой-изготовителем с уже записанной на них информацией. Запись на них возможна в лабораторных условиях лазерным лучом большой мощности. В оптическом дисководе ПК эта дорожка читается лазерным лучом меньшей мощности. Ввиду чрезвычайно плотной записи CD-ROM имеют емкость до 1,5 Гб, время доступа от 30 до 300 мс, скорость считывания данных от 150 до 1500 Кб/сек;

  • перезаписываемые CD-диски имеют возможность записывать информацию прямо с ПК, но для этого необходимо специальное устройство.

  • Магнитооптические диски (ZIP) — запись на такой диск производится под высокой температурой намагничиванием активного слоя, а считывание — лучом лазера. Эти диски удобны для хранения информации, но оборудование стоит дорого. Емкость такого диска до 20,8 Мб, время доступа от 15 до 150 мс, скорость считывания информации до 2000 Кб/сек.

10. Программное обеспечение компьютера

Что такое программное обеспечение

Любой компьютер представляет собой автоматическое устройство, работающее по заложенным в него программам. Компьютерная программа представляет собой последовательность команд, записанных в двоичной форме на машинном языке, понятном процессору компьютера. Компьютерная программа является формой записи алгоритмов решения поставленных задач. Совокупность готовых к исполнению программ, хранящихся в оперативной и внешней памяти компьютера, называется его программным обеспечением.

Виды программного обеспечения

Можно выделить три основных вида программного обеспечения: системное, прикладное и инструментальное.

Системное программное обеспечение обеспечивает согласованное взаимодействие устройств компьютера и создает условия для выполнения остальных программ. Самой важной частью системного программного обеспечения является операционная система – программа, необходимая для работы компьютера. Операционная система выполняет следующие функции:

  • обеспечение пользовательского интерфейса, то есть программных средств диалога человека и компьютера;

  • управление выполнением других программ на компьютере, в том числе организация их доступа к устройствам (процессору, памяти, устройствам ввода-вывода);

  • управление хранением информации на компьютере в виде иерархической системы папок, содержащих файлы.

Можно сказать, что операционная система является средой, в которой выполняются остальные программы.

К системному программному обеспечению относятся также драйверы – программы управляющие работой устройств ввода-вывода и некоторых других устройств, позволяющие настраивать параметры их работы. Драйверы обычно поставляются вместе с устройствами. Комплект наиболее распространенных драйверов поставляется вместе с операционной системой.

В состав системного программного обеспечения входят также антивирусы и другие программы, связанные с обслуживанием компьютера. Системные программы часто называют утилитами (от лат. utilis – полезный).

Прикладное программное обеспечение (приложения) – это программы, непосредственно предназначенные для удовлетворения потребностей пользователя. Типичные представители прикладного программного обеспечения:

  • текстовые и графические редакторы;

  • программы работы с электронными таблицами;

  • системы управления базами данных;

  • средства просмотра web-страниц;

  • обучающие системы, электронные энциклопедии, игры;

  • специализированные программные системы, предназначенные для

  • автоматизации определенного вида профессиональной деятельности, например, банковские

системы, системы управления транспортными перевозками, системы геометрического моделирования в машиностроении.

К инструментальному программному обеспечению относятся средства автоматизации разработки компьютерных программ, то есть инструменты программиста. Инструментальное ПО — это разновидность прикладного ПО (оно является прикладным для разработчика).

При разработке программного обеспечения необходимо представлять алгоритмы в форме, понятной компьютеру. Для этого используются комплексы программ, называемые системами программирования . Они составляют основу инструментального программного обеспечения.

11. Графический интерфейс операционных систем и приложений.

В настоящее время все операционные системы для персональных компьютеров обеспечивают взаимодействие с пользователем с помощью графического интерфейса.

Это позволяет даже начинающему пользователю компьютера уверенно работать в среде операционной системы (проводить операции с файлами, запускать программы и так далее).

Графический интерфейс позволяет осуществлять взаимодействие человека с компьютером в форме диалога с использованием окон, меню и элементов управления (диалоговых панелей, кнопок и так далее).

Работа с мышью. Для работы с графическим интерфейсом используется мышь или другое координатное устройство ввода, при этом пользователь должен уметь производить:

  • левый щелчок - однократное нажатие и отпускание основной (обычно левой) кнопки мыши;

  • правый щелчок - однократное нажатие и отпускание дополнительной (обычно правой) кнопки мыши;

  • двойной щелчок - два нажатия основной кнопки мыши с минимальным интервалом времени между ними;

  • перетаскивание - нажатие левой или правой кнопки мыши и перемещение объекта с нажатой кнопкой.

Рабочий стол. Основную часть экрана занимает Рабочий стол, на котором располагаются значки и ярлыки (значки с маленькими стрелочками в нижнем левом углу). Значки и ярлыки обеспечивают (с помощью двойного щелчка) быстрый доступ к дискам, папкам, документам, приложениям и устройствам.

Значки появляются на Рабочем столе после установки Windows. В левой части экрана обычно располагаются значки Мой компьютер, Сетевое окружение, Корзина и Мои документы.

Для быстрого доступа к дискам, принтеру, часто используемым документам целесообразно создать на рабочем столе ярлыки. Ярлык отличается от значка тем, что обозначает объект, фактически расположенный не на Рабочем столе, а в некоторой другой папке. Стрелочка означает, что мы имеем не сам объект, а ссылку на него. Ярлыки создаются перетаскиванием значков объектов на Рабочий стол. Кнопка Пуск позволяет вызывать Главное меню, которое обеспечивает доступ практически ко всем ресурсам системы и содержит команды запуска приложений, настройки системы, поиска файлов и документов, доступа к справочной системе и др.

Windows является многозадачной операционной системой, то есть параллельно могут выполняться несколько приложений. Каждое запущенное приложение обозначается кнопкой на Панели задач, при этом переход от работы в одном приложении к работе в другом может производиться с помощью щелчка по кнопке. Работающее (активное) приложение изображается на панели задач в виде нажатой кнопки.

В крайней правой части Панели задач находятся Часы. Левее часов располагаются индикаторы состояния системы. Например, индикатор Ru обозначает, что в текущий момент используется русская раскладка клавиатуры.

Окна. Важнейшим элементом графического интерфейса Windows являются окна, действительно ведь "windows" в переводе означает "окна". Существуют два основных типа окон - окна приложений и окна документов.

Окна приложений. В окне приложения выполняется любое запущенное на выполнение приложение или отражается содержимое папки. Открыть или закрыть окно приложения - то же, что и запустить программу на выполнение или завершить ее. Окна приложений можно перемещать на любое место Рабочего стола, разворачивать на весь экран или сворачивать в кнопки на панели задач.

Основными элементами окна приложения являются:

  • рабочая область: внутренняя часть окна, содержит вложенные папки или окна документов;

  • границы: рамка, ограничивающая окно с четырех сторон. Размеры окна можно изменять, перемещая границу мышью;

  • заголовок: строка непосредственно под верхней границей окна, содержащая название окна;

  • значок системного меню: кнопка слева в строке заголовка открывает меню перемещения и изменения размеров окна;

  • строка горизонтального меню: располагается непосредственно под заголовком, содержит пункты меню, обеспечивает доступ к командам;

  • панель инструментов: располагается под строкой меню, представляет собой набор кнопок, обеспечивает быстрый доступ к некоторым командам;

  • кнопки Свернуть, Развернуть/Восстановить, Закрыть расположены в верхней правой части окна.

Окна документов. Окна документов предназначены для работы с документами и "живут" внутри окон приложений. Можно раскрывать, сворачивать, перемещать или изменять размеры этих окон, однако они всегда остаются в пределах окна своего приложения. Окно документа имеет те же кнопки управления, что и окно приложения.

Окно документа всегда содержит зону заголовка (содержащую имя документа) и часто полосы прокрутки (появляющиеся, когда документ не помещается полностью в окне) и линейки. Открытое окно документа может находиться в активном либо в пассивном состоянии. Если окно находится в пассивном состоянии (зона заголовка не выделена цветом), то, щелкнув по любой его части мышью, можно перевести его в активное состояние.

Меню. Меню является одним из основных элементов графического интерфейса и представляет собой перечень команд (как правило, тематически сгруппированных), из которых необходимо сделать выбор (поместив на пункт меню указатель мыши и произведя щелчок). Выбор пункта меню приводит к выполнению определенной команды. Если за командой меню следует многоточие, то ее выбор приведет к появлению диалоговой панели, которая позволяет пользователю получить или ввести дополнительную информацию.

Диалоговые панели. Диалоговые панели могут включать в себя разнообразные элементы. Рассмотрим возможности диалоговых панелей на примере уточнения параметров поиска файлов.

Вкладки. Диалоговые панели могут включать в себя несколько "страниц", которые называются вкладками.

После ввода команды [Найти-Файлы и папки...] появится диалоговая панель Найти: Все файлы. Эта панель содержит три вкладки: Имя и местоположение, Дата, Дополнительно. Выбор вкладки осуществляется левым щелчком.

Командные кнопки. Нажатие на кнопку (щелчок) обеспечивает выполнение того или иного действия, а надпись на кнопке поясняет ее назначение. Так, щелчок по кнопке с надписью Найти позволяет начать процесс поиска.

Текстовые поля. Текстовое поле называется иногда полем редактирования и позволяет ввести какую-либо текстовую информацию.

Например, если пользователь хочет найти файлы, содержащие слово "информатика", то его необходимо ввести в текстовом поле Искать текст: вкладки Имя и местоположение диалоговой панели Найти: Все файлы.

Списки. Список представляет собой набор предлагаемых на выбор значений. Раскрывающийся список выглядит как текстовое поле, снабженное кнопкой с направленной вниз стрелочкой. Раскрытие списка осуществляется с помощью левого щелчка по кнопке.

Раскрывающийся список Где искать: диалоговой панели Найти: Все файлы позволяет указать диск или папку (например, папку Мои документы), в которой будет осуществлен поиск.

Переключатели. Переключатели служат для выбора одного из взаимоисключающих вариантов, варианты выбора представлены в форме маленьких белых кружков. Выбранный вариант обозначается кружком с точкой внутри. Выбор варианта производится с помощью левого щелчка.

Так, на вкладке Дата диалоговой панели Найти: Все файлы имеются два переключателя: основной (на два варианта) и дополнительный (на три варианта). В процессе поиска файлов, установив основной переключатель в положение Найти все файлы, а дополнительный в положение между, можно ограничить область поиска периодом изменения файлов.

Флажки. Флажок обеспечивает присваивание какому-либо параметру определенного значения. Флажки могут располагаться как группами, так и поодиночке. Флажок имеет форму квадратика; когда флажок установлен, в нем присутствует "галочка". Установка флажков производится с помощью левого щелчка.

На вкладке Имя и местоположение диалоговой панели Найти: Все файлы, установив флажок Включая вложенные папки, можно обеспечить необходимую глубину поиска файлов.

Счетчики. Счетчик представляет собой пару стрелок, которые позволяют увеличивать или уменьшать значение в связанном с ними поле. Так, при поиске файла на вкладке Дата диалоговой панели Найти: Все файлы значения полей, задающих период изменения файла, можно менять с помощью счетчиков. Для увеличения соответствующего значения необходимо произвести щелчок по стрелке, направленной вправо, а для уменьшения - по стрелке, направленной влево.

Ползунки. Ползунок позволяет плавно изменять значение какого-либо параметра. Например, с помощью ползунков можно менять уровень громкости воспроизведения и записи звука, баланс левого и правого канала и т. п.

После двойного щелчка на индикаторе громкости, который находится на Панели задач, появится диалоговая панель Регулятор громкости с ползунками громкости и баланса каналов.

Контекстные меню. Объектно-ориентированный подход, используемый в операционной системе Windows, позволяет рассматривать диски, папки и файлы как объекты. Все эти объекты имеют определенные свойства, и над ними могут проводиться определенные операции.

Например, документы (документом называется любой файл, обрабатываемый с помощью приложений) имеют определенный объем и их можно копировать, перемещать и переименовывать; окна имеют размер, который можно изменять и так далее.

Хотя каждый из этих объектов имеет свои конкретные свойства и над ним возможны определенные операции, технология работы с объектами и интерфейс универсальны. Это позволяет пользователю достичь единообразия при работе с разными объектами.

Ознакомиться со свойствами объекта, а также выполнить над ним разрешенные операции можно с помощью контекстного меню. Для вызова контекстного меню необходимо осуществить правый щелчок на значке объекта.

Для того чтобы ознакомиться со свойствами диска, надо выбрать в контекстном меню пункт Свойства - появится диалоговая панель Свойства: Диск 3,5 (А). Панель содержит четыре вкладки: Общие, Сервис, Оборудование, Доступ. На вкладке Общие содержится информация о типе файловой системы, общей, свободной и занятой информационной емкости диска и др.

12. Компьютерные вирусы и антивирусные программы

Посреди огромного разнообразия видов компьютерных программ существует одна их разновидность, заслуживающая особого упоминания. Главное отличие этих программ от всех остальных состоит в том, что они вредны, т.е. предназначены для нанесения ущерба пользователям ЭВМ. Это компьютерные вирусы.

Компьютерным вирусом называется программа, обычно малая по размеру (от 200 до 5000 байт), которая самостоятельно запускается, многократно копирует свой код, присоединеняя его к кодам других программ ("размножается") и мешает корректной работе компьютера и/или разрушает хранимую на магнитных дисках информацию (программы и данные).

Разновидности

По приближенным оценкам к 2009 году существовало около 40 000 различных вирусов. Подсчет их осложняется тем, что многие вирусы мало отличаются друг от друга, являются вариантами одного и того же вируса и, наоборот, один и тот же вирсу может менять свой облик, кодировать сам себя. На самом деле основных принципиальных идей, лежащих в основе вирусов, не очень много.

Среди всего разнообразия вирусов следует выделить следующие группы:

  • загрузочные вирусы (заражают программу начальной загрузки компьютера, хранящуюся в загрузочном секторе дискеты или винчестера, и запукающиеся при загрузке компьютера);

  • файловые вирусы (в простейшем случае заражают выполняемые файлы, но могут распространяться и через файлы документов)

  • загрузочно-файловые вирусы (имеют признаки как загрузочных, так и файловых вирусов)

  • драйверные (заражают драйверы устройств компьютера или запускают себя путем включения в файл конфигурации дополнительной строки);

  • макро-вирусы (заражаю документы, создаваемые средствами офисных программ, в которых используются языки макро-программирования);

  • сетевые вирусы – черви (использующие протоколы и возможности компьютерных сетей).

Антивирусные средства

К настоящему времени накоплен значительный опыт борьбы с компьютерными вирусами, разработаны антивирусные программы, известны меры защиты программ и данных.

Антивирусные программы можно разделить на несколько типов:

  • Детекторы (их назначение - лишь обнаружить вирус).

  • Фаги (фаг - это программа, которая способна не только обнаружить, но и уничтожить вирус).

  • Ревизоры (ревизор контролирует возможные пути распространения программ-вирусов и заражени компьютеров).

Сторожа (инспекторы)

  • (сторож - это резидентная программа, постоянно находящаяся в памяти компьютера, контролирующая операции компьютера, связанные с изменением информации на магнитных дисках, и предупреждающая пользователя о них).

  • Вакцины (антивирусные программы, ведущие себя подобно вирусам, но не наносящие вреда).

Наиболее распространенные антивирусные программы:

  • Doctor Web (разработчик Игорь Данилов);

  • Antiviral Toolkit Pro (разработана в лаборатории Евгения Касперского).

13. Основные функции и состав операционной системы.

Самой важной частью системного программного обеспечения является операционная система – программа, необходимая для работы компьютера. Операционная система выполняет следующие функции:

  • обеспечение пользовательского интерфейса, то есть программных средств диалога человека и компьютера;

  • управление выполнением других программ на компьютере, в том числе организация их доступа к устройствам (процессору, памяти, устройствам ввода-вывода);

  • управление хранением информации на компьютере в виде иерархической системы папок, содержащих файлы.

Можно сказать, что операционная система является средой, в которой выполняются остальные программы.

Для того чтобы мы могли не думать о том, как в компьютере происходит работа процессора с программами, данными и с аппаратными устройствами, существует специальный комплекс программ, называемых операционной системой.

Операционные системы разные, но их назначение и функции одинаковые. Операционная система является базовой и необходимой составляющей ПО компьютера, без нее компьютер не может работать в принципе.

Операционная система – комплекс программ, обеспечивающих взаимодействие всех аппаратных и программных частей компьютера между собой и взаимодействие пользователя и компьютера.

Операционная система обеспечивает связь между пользователем, программами и аппаратными устройствами.

Структура операционной системы:

  • Ядро – переводит команды с языка программ на язык «машинных кодов», понятный компьютеру.

  • Драйверы – программы, управляющие устройствами.

  • Интерфейс – оболочка, с помощью которой пользователь общается с компьютером.

Операционная система обеспечивает совместное функционирование всех устройств компьютера и предоставляет пользователю доступ к его ресурсам.

Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В операционной системе имеются программные модули, управляющие файловой системой.

В состав операционной системы входит специальная программа — командный процессор, которая запрашивает у пользователя команды и выполняет их. Пользователь может дать, например, команду выполнения какой-либо операции над файлами (копирование, удаление, переименование), команду вывода документа на печать и т. д. Операционная система должна эти команды выполнить.

К магистрали компьютера подключаются различные устройства (дисководы, монитор, клавиатура, мышь, принтер и др.). В состав операционной системы входят драйверы устройств — специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами. Любому устройству соответствует свой драйвер.

Для упрощения работы пользователя в состав современных операционных систем, и в частности в состав Windows, входят программные модули, создающие графический пользовательский интерфейс. В операционных системах с графическим интерфейсом пользователь может вводить команды посредством мыши, тогда как в режиме командной строки необходимо вводить команды с помощью клавиатуры.

Операционная система содержит также сервисные программы, или утилиты. Такие программы позволяют обслуживать диски (проверять, сжимать, дефрагментировать и т. д.), выполнять операции с файлами (архивировать и т. д.), работать в компьютерных сетях и т. д.

Для удобства пользователя в операционной системе обычно имеется и справочная система. Она предназначена для оперативного получения необходимой информации о функционировании как операционной системы в целом, так и о работе ее отдельных модулей.

14. Глобальная компьютерная сеть Интернет.

Интернет - сеть сетей. Локальные сети обычно объединяют несколько десятков компьютеров, размещенных в одном здании, однако они не позволяют обеспечить совместный доступ к информации пользователям, находящимся, например, в различных частях города. В этом случае дистанционный доступ к информации обеспечивают региональные сети, объединяющие компьютеры в пределах одного региона (города, страны, континента).

Многие организации, заинтересованные в защите информации от несанкционированного доступа (например, военные, банковские и пр.), создают собственные, так называемые корпоративные сети. Корпоративная сеть может объединять тысячи и десятки тысяч компьютеров, размещенных в различных странах и городах.

Потребности формирования единого мирового информационного пространства привели к объединению локальных, региональных и корпоративных сетей в глобальную компьютерную сеть Интернет. В результате в настоящее время (на январь 2005 года) основу Интернета составляют более трехсот миллионов серверов.

Надежность функционирования глобальной сети обеспечивает большое количество каналов передачи информации с высокой пропускной способностью между локальными, региональными и корпоративными сетями. Например, российская региональная компьютерная сеть Рунет (RU) соединяется многочисленными каналами передачи информации с северо-американской (US), европейской (EU) и японской (JP) региональными сетями.

Интернет - это глобальная компьютерная сеть, в которой локальные, региональные и корпоративные сети соединены между собой многочисленными каналами передачи информации с высокой пропускной способностью.

Подключение к Интернету. В каждой локальной, региональной или корпоративной сети имеется, по крайней мере, один компьютер (сервер Интернета), который имеет постоянное подключение к Интернету.

Для подключения локальных сетей чаще всего используются оптоволоконные линии связи. Однако в случаях подключения неудобно расположенных или удаленных компьютерных сетей, когда прокладка кабеля затруднена или невозможна, используются беспроводные линии связи. Если передающая и принимающая антенны находятся в пределах прямой видимости, то используются радиоканалы, в противном случае обмен информацией производится через спутниковый канал с использованием специальных антенн

Сотни миллионов компьютеров пользователей могут периодически подключаться к Интернету по коммутируемым телефонным каналам с помощью провайдеров Интернета. Провайдеры Интернета имеют высокоскоростные соединения своих серверов с Интернетом и поэтому могут предоставить Интернет-доступ по телефонным каналам одновременно сотням и тысячам пользователей.

Для соединения компьютера пользователя по телефонному каналу с сервером Интернет-провайдера к обоим компьютерам должны быть подключены модемы. Модемы обеспечивают передачу цифровых компьютерных данных по аналоговым телефонным каналам со скоростью до 56 Кбит/с.

Современные ADSL-технологии позволяют использовать обычные телефонные каналы для высокоскоростного (1 Мбит/с и выше) подключения к Интернету. Важно, что при этом телефонный номер остается свободным.

Обычные и ADSL модемы подключаются к USB-порту компьютера и к разъему телефонной розетки.

Пользователи портативных компьютеров могут подключаться к Интернету с использованием беспроводной технологии Wi-Fi. На вокзалах, в аэропортах и других общественных местах устанавливаются точки доступа беспроводной связи, подключенные к Интернету. В радиусе 100 м портативный компьютер, оснащенный беспроводной связью, автоматически получает доступ в Интернет со скоростью до 11 Мбит/с.

15. Локальные компьютерные сети.

При работе на персональном компьютере в автономном режиме пользователи могут обмениваться информацией (программами, документами и т.д.), используя дискеты, оптические диски и flash-память. Однако перемещение5 носителя информации между компьютерами не всегда возможно и может занимать достаточно продолжительное время.

Создание компьютерных сетей вызвано практической потребностью быстрого доступа к информационным ресурсам других компьютеров, а также принтерам и другим периферийным устройствам.

Локальная компьютерная сеть объединяет компьютеры, установленные на небольшом удалении друг от друга (в одном помещении или здании).

Например, в локальную сеть обычно объединены компьютеры в школьном компьютерном классе, а в здании школы в локальную сеть могут быть объединены несколько десятков компьютеров, установленных в предметных кабинетах.

Одноранговые сети и сети с использованием сервера. В небольших локальных сетях все компьютеры обычно равноправны, т.е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, папки или принтеры) сделать доступными для других пользователей сети. Основной недостаток таких одноранговых сетей – слабая защищенность информации от несанкционированного доступа.

В целях обеспечения большей информационной безопасности один из компьютеров локальной сети может быть выделен в качестве сервера, на котором обычно хранится наиболее важная информация. Правила доступа к этой информации устанавливает один человек – администратор сети.

Аппаратное и программное обеспечение проводных и беспроводных сетей. Каждый компьютер или принтер, подключенный к локальной сети, должен иметь сетевую плату. Основной функцией сетевой платы является передача и прием информации из сети.

В проводных локальных сетях соединение компьютеров между собой производится с помощью витой пары.

В беспроводных локальных сетях в качестве центрального сетевого устройства используется точка доступа, а на каждом компьютере должна быть установлена специальная беспроводная сетевая плата типа Wi-Fi.

16. Информационные ресурсы Интернета.

Всемирная паутина

Глобальная сеть Интернет привлекает пользователей своими информационными ресурсами и услугами (сервисами), которыми регулярно пользуется около миллиарда человек во всех странах мира.

Бурное развитие сети Интернет, которое происходит последние 15 лет, в первую очередь обусловлено появлением Всемирной паутины. "Всемирная паутина" - это вольный перевод английского словосочетания "World Wide Web", которое часто обозначается как WWW или Web.

Технология Всемирной паутины. Всемирная паутина использует технологию гипертекста, в которой документы связаны между собой с помощью гиперссылок.

Гиперссылки позволяют осуществлять переходы с одного документа на другой. Документы, содержащие гиперссылки, называются Web-страницами, а серверы Интернета, их хранящие, - Web-серверами.

Переходы по гиперссылкам можно осуществлять между Web-страницами, хранящимися на одном компьютере, а также между Web-страницами, находящимися на любых компьютерах, подключенных к Интернету.

В качестве указателей ссылок на Web-страницах могут использоваться фрагменты текста, которые выделяются цветом и подчеркиванием, а также графические изображения, которые выделяются рамкой. Активизация на исходной Web-странице указателя ссылки (например, щелчком мышью) вызывает переход на нужную Web-страницу (рис. 6.10).

Всемирная паутина - это сотни миллионов Web-серверов Интернета, содержащих сотни миллиардов Web-страниц, в которых используется технология гипертекста.

Web-страница может быть мультимедийной, т. е. может содержать различные мультимедийные объекты: графические изображения, анимацию, звук и видео.

Web-страница может быть интерактивной, т. е. содержать формы с полями, которые используются при регистрации пользователей бесплатной электронной почты, при покупках в Интернет-магазинах и т. д.

Тематически связанные Web-страницы обычно бывают представлены в форме Web-сайта, т. е. целостной системы документов, связанных между собой в единое целое с помощью ссылок.

Адрес Web-страницы. В настоящее время на Web-серверах Интернета хранится громадное количество Web-страниц. Найти Web-страницу в Интернете можно с помощью адреса Web-страницы.

Адрес Web-страницы включает в себя способ доступа к документу и имя сервера Интернета, на котором находится документ.

В качестве способа доступа к Web-страницам используется протокол передачи гипертекста HTTP (Hyper Text Transfer Protocol). При записи протокола после его имени следует двоеточие и две наклонные черты: http://

В качестве примера запишем адрес титульной страницы Web-сайта "Информатика и информационные технологии". Страница расположена на сервере iit.metodist.ru, следовательно, адрес принимает вид:

http://uchinf.ru

Браузеры

Просмотр Web-страниц осуществляется с помощью специальных программ просмотра - браузеров. В настоящее время наиболее распространенными браузерами являются Internet Explorer, Mozilla и Opera.

Окно браузера содержит стандартные элементы окна приложения:

  • меню окна, содержащее наборы команд Файл, Правка, Вид, Избранное, Сервис и Справка;

  • панель инструментов, кнопки которой позволяют переходить с одной Web-страницы на другую (кнопки Вперед, Назад, Домой), а также управлять процессом их загрузки (кнопки Остановить, Обновить);

  • текстовое поле Адрес:, в которое Интернет-адрес нужной Web-страницы вводится с клавиатуры или выбирается из списка;

  • рабочую область, в которой просматриваются Web-страницы.

Виртуальные путешествия по Всемирной паутине. Если компьютер подключен к Интернету, то можно запустить один из браузеров и отправиться в виртуальное путешествие по Всемирной паутине. В браузер будет автоматически загружена начальная Web-страница (адрес Web-страницы, с которой начинается путешествие, можно изменить с помощью настроек браузера).

При открытии Web-страницы в браузере на компьютере пользователя она проделывает длинный путь с удаленного сервера Интернета по каналам передачи информации через несколько промежуточных серверов Интернета. Скорость загрузки Web-страницы зависит не от величины расстояния до Web-сервера, а от количества промежуточных серверов и качества линий связи, по которым передается информация от сервера к серверу. Может быть ситуация, когда Web-страница загружается гораздо быстрее с сервера, находящегося на другом континенте, чем с сервера, находящегося на соседней улице.

Для перехода на другую Web-страницу в текстовое поле Адрес: необходимо ввести ее Интернет-адрес. Многие Web-страницы содержат гиперссылки на другие Web-страницы, поэтому дальнейшее путешествие по Всемирной паутине можно продолжить активизацией одной из них.

В процессе чтения книги (учебника, справочника, энциклопедии) достаточно часто требуется вернуться к прочитанному материалу. Для более быстрого поиска нужной страницы часто в книгу вставляют так называемые "закладки". В процессе путешествий по Всемирной паутине целесообразно в браузере сохранять в качестве "закладок" Интернет-адреса интересных Web-страниц. Для посещения такой страницы достаточно будет активизировать одну из "закладок".

Электронная почта

Электронная почта (e-mail) является наиболее распространенным сервисом Интернета. Она является исторически первой информационной услугой компьютерных сетей и не требует обязательного наличия высокоскоростных и качественных линий связи.

Электронная почта имеет несколько серьезных преимуществ перед обычной почтой. Наиболее важное из них - скорость пересылки сообщений. Если письмо по обычной почте может идти до адресата дни и недели, то письмо, посланное по электронной почте, сокращает время передачи до нескольких десятков секунд или, в худшем случае, до нескольких часов.

Другое преимущество состоит в том, что электронное письмо может содержать не только текстовое сообщение, но и вложенные файлы (программы, графику, звук и т. д.). Кроме того, электронная почта позволяет посылать сообщение сразу нескольким абонентам, пересылать письма на другие адреса и пр.

Адрес электронной почты. Для того чтобы электронное письмо дошло до адресата, оно, кроме самого сообщения, обязательно должно содержать адрес электронной почты получателя письма.

Первая часть почтового адреса usename имеет произвольный характер и задается самим пользователем при регистрации почтового ящика. Вторая часть server.ru является именем почтового сервера Интернета, на котором пользователь зарегистрировал свой почтовый ящик.

Адрес электронной почты записывается по определенной форме и состоит из двух частей, разделенных символом @: username@server.ru

Адрес электронной почты записывается только латинскими буквами и не должен содержать пробелов. Например, если почтовый сервер имеет имя metodist.ru, то имена почтовых ящиков пользователей будут иметь вид:

username@uchinf.ru

Адреса абонентов электронной почты хранятся на компьютере пользователя в базе данных "Адресная книга". В адресную книгу заносится имя абонента, адрес электронной почты, телефон и другие данны.

Функционирование электронной почты. Пользователь Интернета может зарегистрировать почтовый ящик на почтовом сервере провайдера, в котором будут накапливаться передаваемые и получаемые электронные письма.

С помощью почтовой программы создается почтовое сообщение на локальном компьютере. На этом этапе кроме написания текста сообщения необходимо указать адрес получателя сообщения (можно взять из "Адресной книги"), тему сообщения и вложить в сообщение при необходимости файлы.

Процесс передачи сообщения начинается с подключения к Интернету и доставки сообщения в свой почтовый ящик на удаленном почтовом сервере. Почтовый сервер сразу же отправит это сообщение через систему почтовых серверов Интернета на почтовый сервер получателя в его почтовый ящик.

Для получения письма адресат должен соединиться с Интернетом и доставить почту из своего почтового ящика на удаленном почтовом сервере на свой локальный компьютер

Почтовые программы обычно предоставляют пользователю также многочисленные дополнительные сервисы по работе с почтой (выбор адресов из адресной книги, автоматическая рассылка сообщений по указанным адресам и др.).

Почтовая программа Outlook Express. Для работы с электронной почтой необходимы специальные почтовые программы. Большой популярностью пользуется почтовая программа Outlook Express, которая входит в состав операционной системы Windows. После запуска программы Outlook Express появляется окно приложения, которое состоит из четырех частей.

В левой верхней части окна находится перечень папок, в которых хранятся электронные письма:

Входящие - содержит полученные письма;

Исходящие - содержит отправляемые письма, с момента создания и до момента доставки с локального компьютера пользователя на почтовый сервер провайдера;

Отправленные - содержит все письма, доставленные на почтовый сервер;

Удаленные - содержит удаленные письма;

Черновики - содержит заготовки писем.

Пользователь может создавать собственные папки для хранения тематически группированных электронных писем.

В нижней левой части окна размещается список контактов, который предоставляет доступ к информации, хранящейся в базе данных "Адресная книга" (адреса электронной почты, телефоны и т. д.).

Правое окно разделено на две части. В верхней части высвечивается список сообщений, хранящихся в выделенной папке.

В нижней части правого окна отображается содержание выделенного сообщения.

Электронная почта с Web-интерфейсом. Некоторые почтовые серверы предоставляют пользователям возможность работы с электронной почтой с использованием Web-интерфейса. Работа с Web-почтой может производиться с помощью любого браузера. Существенной особенностью Web-почты является то, что все сообщения постоянно хранятся на удаленном почтовом сервере, а не на локальном компьютере пользователя.

Многие почтовые Web-серверы предлагают всем желающим зарегистрировать бесплатный почтовый ящик. Зарегистрированные пользователи должны ввести свой логин и пароль, после чего они могут войти в почтовую систему. Для новых пользователей предлагается процедура регистрации.

Файловые архивы

Серверы файловых архивов. Десятки тысяч серверов Интернета являются серверами файловых архивов, и на них хранятся сотни миллионов файлов различных типов (программы, драйверы устройств, графические и звуковые файлы и т. д.). Наличие таких серверов файловых архивов очень удобно для пользователей, так как многие необходимые файлы можно "скачать" непосредственно из Интернета.

Файловые серверы поддерживают многие компании-разработчики программного обеспечения и производители аппаратных компонентов компьютера и периферийных устройств. Размещаемое на таких серверах программное обеспечение является свободно распространяемым или условно бесплатным и поэтому, "скачивая" тот или иной файл, пользователь не нарушает закон об авторских правах на программное обеспечение.

Менеджеры загрузки файлов. Для удобства пользователей многие серверы файловых архивов имеют Web-интерфейс, что позволяет работать с ними с использованием браузеров. Браузеры являются интегрированными системами для работы с различными информационными ресурсами Интернета и поэтому включают в себя менеджеры загрузки файлов.

Однако удобнее для работы с файловыми архивами использовать специализированные менеджеры загрузки файлов, которые позволяют продолжить загрузку файла после разрыва соединения с сервером. Менеджеры загрузки файлов предоставляют пользователю подробную информацию в числовом и графическом виде о процессе загрузки файла (объем файла, объем загруженной части, в том числе в процентах, скорость загрузки, прошедшее и оставшееся время загрузки и др.).

В некоторых менеджерах загрузки файлов достигается увеличение скорости загрузки за счет разбиения файла на части и одновременной загрузки всех частей. Например, в менеджере загрузки файлов FlashGet процесс загрузки каждой части файла представляется в графической форме в нижней части окна приложения.

Адрес файла на сервере файлового архива. Доступ к файлам на серверах файловых архивов возможен как по протоколу HTTP, так и по специальному протоколу передачи файлов FTP (File Transfer Protocol). Протокол FTP позволяет не только загружать файлы с удаленных серверов файловых архивов на локальный компьютер, но и наоборот, производить передачу файлов с локального компьютера на удаленный сервер.

Адрес файла включает в себя способ доступа к файлу и имя сервера Интернета, на котором находится файл.

Если в качестве способа доступа к файлу file.exe, хранящемуся на сервере ftp.uchinf.ru, используется протокол передачи файлов FTP, то адрес файла запишется следующим образом:

ftp://ftp.uchinf.ru/file.exe

В последнее время все более широко распространяется общение в Интернете в режиме реального времени. Увеличившаяся скорость передачи данных и возросшая производительность компьютеров дают пользователям возможность не только обмениваться в реальном времени текстовыми сообщениями, но и осуществлять аудио- и видеосвязь.

Серверы общения в реальном времени. В Интернете существуют тысячи серверов, на которых реализуется общение в реальном времени. Любой пользователь может подключиться к такому серверу и начать общение с одним из посетителей этого сервера или участвовать в коллективной встрече.

Простейший способ общения "разговор", или чат (англ. chat) - это обмен сообщениями, набираемыми с клавиатуры. Вы вводите сообщение с клавиатуры, и оно высвечивается в окне, которое одновременно видят все участники встречи.

Если ваш компьютер, а также компьютеры собеседников оборудованы звуковой картой, микрофоном и наушниками или акустическими колонками, то вы можете обмениваться звуковыми сообщениями. Однако "живой" разговор возможен одновременно только между двумя собеседниками.

Для того чтобы вы могли видеть друг друга, т. е. обмениваться видеоизображениями, к компьютерам должны быть подключены Web-камеры.

Интерактивное общение с помощью системы ICQ. В последние годы большую популярность приобрело интерактивное общение через серверы ICQ (эта трехбуквенная аббревиатура образована из созвучия слов "I seek you" - "Я ищу тебя").

Система интерактивного общения ICQ интегрирует различные формы общения: электронную почту, обмен текстовыми сообщениями (chat), Интернет-телефонию, передачу файлов, поиск в сети людей и т. д.

В настоящее время в системе ICQ зарегистрировано почти 200 миллионов пользователей, причем каждый пользователь имеет уникальный идентификационный номер. После подключения к Интернету пользователь может начинать общение с любым зарегистрированным в системе ICQ и подключенным в данный момент к Интернету пользователем.

Интернет-телефония. Интернет-телефония используется для передачи голосовых данных через компьютерную сеть Интернет. Провайдеры Интернет-телефонии с помощью специального оборудования связывают между собой компьютерную сеть Интернет и обычную телефонную сеть. Пользователь может воспользоваться услугами Интернет-телефонии и позвонить непосредственно с компьютера или с обычного телефона, предварительно набрав номер провайдера Интернет-телефонии.

Интернет-телефонию выгодно использовать для звонков в отдаленные населенные пункты и страны мира, так как минута такой связи существенно дешевле тарифов междугородней и международной телефонной связи.

Мобильный Интернет

Сеть мобильной телефонной связи. В настоящее время сеть мобильной телефонной связи охватила практически весь мир, а количество пользователей мобильных телефонов приближается к одному миллиарду человек. Обмен информацией между мобильными телефонами осуществляется с помощью сети, состоящей из антенн станций сотовой связи, соединенных между собой каналами передачи информации.

Сеть мобильной связи позволяет передавать не только голосовые сообщения, но и данные. С помощью мобильных телефонов можно обмениваться короткими текстовыми сообщениями SMS, а также мультимедийными сообщениями MMS, которые позволяют передавать мелодии сигналов для телефонов и графические изображения (например, фотографии, сделанные встроенной в телефон камерой).

Обмен данными между сетью мобильной телефонной связи и компьютерной сетью Интернет. Сеть мобильной телефонной связи и компьютерная сеть Интернет позволяют передавать данные и голосовые сообщения, и поэтому их информационные ресурсы целесообразно объединить. Операторы мобильной телефонной связи и провайдеры Интернета обеспечивают возможность передачи данных между этими сетями.

Обмен данными между сетями позволяет, например, с мобильного телефона передавать сообщения электронной почты на почтовый ящик в Интернете, а с компьютера, подключенного к Интернету, передавать SMS-сообщения на мобильный телефон.

Доступ в Интернет с использованием мобильного телефона. Во многие модели мобильных телефонов встроен модем, поэтому для беспроводного доступа в Интернет достаточно подключить к компьютеру мобильный телефон и дозвониться до провайдера. После соединения компьютера с Интернетом можно "путешествовать" по Всемирной паутине, работать с электронной почтой, "скачивать" файлы и пользоваться любыми другими ресурсами Интернета, как при обычном соединении по кабельным каналам. Недостатком такого подключения является маленькая скорость передачи данных (не более 9,6 Кбит/с) и высокая стоимость минуты соединения.

Полноценный высокоскоростной доступ в Интернет с мобильного телефона можно осуществить по технологии GPRS, при которой максимально возможная скорость передачи данных составляет 170 Кбит/с (это приблизительно в 3 раза быстрее, чем доступ по коммутируемым телефонным линиям). Важно, что эта технология предоставляет немедленный доступ к Интернету, без необходимости дозваниваться до провайдера Интернета и позволяет одновременно вести разговор по мобильному телефону и проводить обмен данными между компьютером и Интернетом.

Подключение мобильного телефона к компьютеру можно осуществить различными способами: с помощью кабеля к СОМ-порту, с помощью кабеля к USB-порту или беспроводным к инфракрасному порту.

Для доступа к информационным ресурсам Интернета непосредственно с мобильных телефонов можно использовать WAP-браузеры. WAP-сайты специально адаптированы под возможности мобильного телефона (двухцветную графику, маленький экран и небольшую память) и содержат новости, прогноз погоды, курс валют и т. д. С WAP-сайтов можно отправить сообщение электронной почты или принять участие в WAP-чате.

Для прослушивания потокового звука и просмотра потокового видео используются мультимедиа проигрыватели (Windows Media Player, WinAmp и др.). Во время воспроизведения потокового мультимедиа файла пользователь получает информацию о скорости передачи данных и может настраивать качество воспроизведения.

Существует достаточно много радио- и телевизионных станций, которые осуществляют вещание через Интернет. Широкой популярностью пользуются Web-камеры, установленные в самых разных уголках мира (на улицах городов, в музеях, в заповедниках и т. д.) и непрерывно передающие изображение.

17. Поиск информации в Интернете.

Сеть растет очень быстрыми темами, и найти нужную информацию среди миллиардов WEB-страниц и файлов очень сложно. Для поиска информации используются специальные поисковые серверы.

Поисковые серверы делятся на две группы:

  • поисковые серверы общего назначения;

  • специализированные поисковые системы.

Современные поисковые системы часто являются информационными порталами, которые предоставляют пользователям не только возможности поиска документов в Интернете, но и доступ к другим информационным ресурсам (новостям, информации о погоде, о валютном курсе и т.д.). Например, Yandex.ru, Google.ru, Rambler.ru.

Поисковые системы общего назначения позволяют находить WEB-страницы и WEB-сайты по ключевым словам в базе данных или путем поиска в иерархической системе каталогов.

Заполнение баз данных осуществляется с помощью специальных программ-роботов, которые периодически «обходят» WEB-серверы Интернета. Программы-роботы читают все встречающиеся документы, выделяют в них ключевые слова и заносят в базу данных, содержащую URL-адреса документов.

Поиск в иерархической системе каталогов. WEB-сайты в базе данных поисковой системы группируются в тематические каталоги. Например, тематический раздел каталога верхнего уровня «Интернет» может содержать вложенные каталоги: «Провайдеры», «Поиск», «Общение» и др. Поиск информации в каталоге сводится к выбору определенного каталога, после чего пользователь получит ссылки на URL-адреса наиболее посещаемых и важных WEB-сайтов и WEB-страниц. Каждая ссылка обычно аннотирована.

Специализированные поисковые системы позволяют искать информацию в других информационных «слоях» Интернета: серверах файловых архивов, почтовых серверов и других.

18. Общение в Интернете.

В последнее время все более широко распространяется общение в Интернете в режиме реального времени. Увеличившаяся скорость передачи данных и возросшая производительность компьютеров дают пользователям возможность не только обмениваться в реальном времени текстовыми сообщениями, но и осуществлять аудио- и видеосвязь.

Серверы общения в реальном времени. В Интернете существуют тысячи серверов, на которых реализуется общение в реальном времени. Любой пользователь может подключиться к такому серверу и начать общение с одним из посетителей этого сервера или участвовать в коллективной встрече.

Простейший способ общения "разговор", или чат (англ. chat) - это обмен сообщениями, набираемыми с клавиатуры. Вы вводите сообщение с клавиатуры, и оно высвечивается в окне, которое одновременно видят все участники встречи.

Если ваш компьютер, а также компьютеры собеседников оборудованы звуковой картой, микрофоном и наушниками или акустическими колонками, то вы можете обмениваться звуковыми сообщениями. Однако "живой" разговор возможен одновременно только между двумя собеседниками.

Для того чтобы вы могли видеть друг друга, т. е. обмениваться видеоизображениями, к компьютерам должны быть подключены Web-камеры.

Интерактивное общение с помощью системы ICQ. В последние годы большую популярность приобрело интерактивное общение через серверы ICQ (эта трехбуквенная аббревиатура образована из созвучия слов "I seek you" - "Я ищу тебя").

Система интерактивного общения ICQ интегрирует различные формы общения: электронную почту, обмен текстовыми сообщениями (chat), Интернет-телефонию, передачу файлов, поиск в сети людей и т. д.

В настоящее время в системе ICQ зарегистрировано почти 200 миллионов пользователей, причем каждый пользователь имеет уникальный идентификационный номер. После подключения к Интернету пользователь может начинать общение с любым зарегистрированным в системе ICQ и подключенным в данный момент к Интернету пользователем.

Интернет-телефония. Интернет-телефония используется для передачи голосовых данных через компьютерную сеть Интернет. Провайдеры Интернет-телефонии с помощью специального оборудования связывают между собой компьютерную сеть Интернет и обычную телефонную сеть. Пользователь может воспользоваться услугами Интернет-телефонии и позвонить непосредственно с компьютера или с обычного телефона, предварительно набрав номер провайдера Интернет-телефонии.

Интернет-телефонию выгодно использовать для звонков в отдаленные населенные пункты и страны мира, так как минута такой связи существенно дешевле тарифов междугородней и международной телефонной связи.

19.Электронная почта.

Электро́нная по́чта (англ. email, e-mail, от англ. electronic mail) — технология и предоставляемые ею услуги по пересылке и получению электронных сообщений (называемых «письма» или «электронные письма») по распределённой (в том числе глобальной) компьютерной сети.

Основным отличием (и достоинством е-майл) от прочих систем передачи сообщений (например, служб мгновенных сообщений) ранее являлась возможность отложенной доставки сообщения, а также развитая (и запутанная, из-за длительного времени развития) система взаимодействия между независимыми почтовыми серверами (отказ одного сервера не приводил к неработоспособности всей системы).

Электроная почта (e-mail) — наиболее распространенный сервис Интернета. Она имеет несколько серьезных преимуществ перед обычной почтой. Наиболее важное из них — это скорость пересылки сообщений. Другое преимущество состоит в том, что электронное письмо может содержать не только текстовые сообщения, но и вложенные файлы (программы, графику, звук и видео).

Кроме того, электронная почта позволяет:

  • посылать сообщения сразу нескольким абонентам;

  • пересылать письма на другие адреса;

  • создавать правила для выполнения определенных действий с однотипными сообщениями (например, удалять рекламные сообщения, приходящие от определенных адресов) и так далее.

Каждое электронное письмо также должно содержать адрес электронной почты получателя письма. Адрес состоит из двух частей. Первая часть имеет произвольный характер и задается самим пользователем при регистрации почтового ящика. Вторая часть является доменным именем почтового сервера, на котором пользователь зарегистрировал свой почтовый ящик.

Адрес электронной почты записывается по определенной форме и состоит из двух частей, разделенных символом @:

user_name@server_name

Адрес электронной почты записывается только латинскими буквами и не должен содержать пробелов.


Экзаменационные вопросы по информатике и ИКТ 8 класс
  • Информатика
Описание:

Экзаменационные вопросы по информатике для 8 класса.

  1. Понятие информации. Информация в природе, обществе, технике.
  2. Количество информации. Алфавитный подход. Задача на определение количества бит, необходимого для кодирования. Подсчет кол-ва информации.
  3. Кодирование текстовой информации.
  4. Виды и свойства информации.
  5. Единицы измерения количества информации.
  6. Устройство компьютера.
  7. Устройства ввода.
  8. Устройства вывода информации.
  9. Накопители информации.
  10. Программное обеспечение компьютера
  11. Графический интерфейс операционных систем и приложений.
  12. Компьютерные вирусы и антивирусные программы
  13. Основные функции и состав операционной системы.
  14. Глобальная компьютерная сеть Интернет.
  15. Локальные компьютерные сети.
  16. Информационные ресурсы Интернета.
  17. Поиск информации в Интернете.
  18. Общение в Интернете.
  19. Электронная почта.
Автор Мансуров Айрат Флюрович
Дата добавления 21.11.2014
Раздел Информатика
Подраздел Другое
Просмотров 673
Номер материала 4546
Скачать свидетельство о публикации

Оставьте свой комментарий:

Введите символы, которые изображены на картинке:

Получить новый код
* Обязательные для заполнения.


Комментарии:

↓ Показать еще коментарии ↓